The adjunction morphism for retgular differential forms and relative duality

Wiley - Tập 106 - Trang 87-123 - 1997
REINHOLD HÜBL1
1Naturwissenschafliche Fakultät I, Mathematik, Universität Regensburg, Regensburg, Germany

Tóm tắt

Let $$f:X \to Y$$ be a morphism of noetherian schemes,generically smooth and equidimensional of dimension $$d,\iota :X\prime \to X$$ a closed embedding such that $$f \circ \iota :X\prime \to Y$$ is generically smooth and equidimensional ofdimension d $$\prime $$ , and X $$\prime $$ , X and Y are excellent schemes withoutembedded components. We exhibit a concrete morphism $$Res_{X\prime /X} :det \mathcal{N}_{X\prime /X} \otimes _{\mathcal{O}_{X\prime } } \iota *\omega _{X/Y}^d \to \omega _{X\prime /Y\prime }^{d\prime } ,$$ which transforms the integral of X/Y into the integral ofX $$\prime $$ /Y. Here $$\mathcal{N}_{X\prime /X} $$ denotes the normal sheaf of X $$\prime $$ /X and $$\omega _{X/Y}^d $$ resp. $$\omega _{X\prime /Y\prime }^{d\prime } $$ denotes the sheaf ofregular differential forms of X/Y resp. X $$\prime $$ /Y. Usinggeneralized fractions we provide a canonical description ofresidual complexes and residue pairs of Cohen--Macaulayvarieties, and obtain a very explicit description of fundamentalclasses and their traces.

Tài liệu tham khảo

Altman, A. and Kleiman, S.: Introduction to Grothendieck duality theory,Lecture Notes in Maths 146, Springer, Berlin, Heidelberg, New York, 1970. Altman, A. and Kleiman, S.: Compactifying the Picard scheme, Adv. Math.35 (1980), 50–112. Grothendieck, A. and Dieudonné, J.: Éléments de géometrie algébrique, Publ. Math. IHES4 (1960), 8, 11 (1961), 17 (1963), 20 (1964), 24 (1965), 28 (1966), 32 (1967). El Zein, F.: La classe fondamentale d'un cycle, Comp. Math.29 (1974),9–33. El Zein, F.:Complexe dualisant et applications à la classe fondamentale d'un cycle. Bull. Soc. Math. France, Mem. 58 (1978). Flenner, H.: Die Sätze von Bertini für lokale Ringe, Math. Ann. 299 (1977), 253–294. Herzog, J. and Kunz, E. (eds.): Der kanonische Modul eines Cohen-Macaulay-Rings, Lecture Notes in Maths 238, Springer, Berlin, Heidelberg, New York, 1971. Hübl, R. and Kunz, E.: Integration of differential forms on schemesJour. reine angew. Math.410 (1990), 53–83. Hü bl, R. and Kunz, E.: Regular differential forms and duality for projective morphisms, Jour. reine angew. Math. 410 (1990), 84–108. Hü bl, R. and Sastry, P.: Regular differential forms and relative duality, Amer. Jour. of Math. 115 (1993), 749–787. Hü bl, R.: Residues of regular and meromorphic differential forms, Math. Ann. 300 (1994), 605–628. Hü ubl, R.: Residues of differential forms, de Rham cohomology and Chern classes, Habilitationsschrift, Regensburg, 1994. Kunz, E.: Kähler differentials,Vieweg, Braunschweig, Wiesbaden, 1986. Kersken, M.: Cousinkomplexe und Nennersysteme.Math. Z. 182 (1983), 389–402. Kleiman, S.: Relative duality for quasi-coherent sheaves, Comp. Math. 41 (1980), 39–60. Kunz, E.: Residuen von Differentialformen auf Cohen-Macaulay Varietäten. Math. Z. 152 (1977), 165–189. Kunz, E. and Waldi, R.: Regular differential forms, Contemporary Mathematics79 (1988),Amer. Math. Soc., Providence. Lang, S.: Introduction to Arakelov Theory,Springer, Berlin, Heidelberg, New York, 1988. Lipman, J.: Dualizing sheaves, differentials and residues on algebraic varieties, Astérisque 117 (1984). Lipman, J.: Notes on derived categories and functors, Preliminary version. Lipman J. and Sastry, P.: Regular differentials and equidimensional scheme maps, Jour. Algebraic Geometry 1 (1992), 101–130. Matsumura, H.: Commutative Algebra(second ed.), Benjamin, Reading, Mass., 1980. Hartshorne, R.: Residues and duality, Lecture Notes in Maths 20, Springer, Berlin, Heidelberg, New York, 1966. Sastry, P.: A pointwise criterion for dualizing complexes, Appendix to [Ye1]. Sastry, P.: Residues and duality on algebraic schemes, Preprint. Seibert, G.: Der Adjunktionsmorphismus für die Garbe der regulären Differentialformen, Doktorarbeit, Universität Regensburg, 1991. Stückrad, J. and Vogel, W: Buchsbaum Rings and Applications, Springer, Berlin,Heidelberg, New York, 1986. Sastry, P. and Yekutieli, A.: On residue complexes, dualizing sheaves and local cohomology, Israel Jour. of Math. 90 (1995), 325–348. Weber, W.: Einbettung algebraischerk-Schemata in reduzierte , vollständige Durchschnitte, Diplomarbeit, Universität Regensburg, 1994. Yekutieli, A.: An explicit construction of the Grothendieck residue complex. Astérisque 208 (1992). Yekutieli, A.: Residues and differential operators on schemes, Preprint.