The adaptor protein Dab2 sorts LDL receptors into coated pits independently of AP-2 and ARH

Journal of Cell Science - Tập 119 Số 20 - Trang 4235-4246 - 2006
Meghan Maurer1, Jonathan A. Cooper2
1Molecular and Cellular Biology Program, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
2Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA

Tóm tắt

Clathrin-mediated endocytosis requires cargo-specific adaptor proteins that recognize specific receptors and recruit them into coated pits. ARH [also called low-density lipoprotein receptor (LDLR) adaptor protein] serves as an adaptor for LDLR endocytosis in liver. However, ARH is dispensable for LDL uptake by some other cell types. Here, we show that the adaptor Dab2 plays a major role in LDLR internalization in HeLa cells and fibroblasts. Dab2 mediates internalization of LDLRs but not transferrin receptors independently of ARH and the classic clathrin adaptor AP-2. If Dab2 is absent, ARH can mediate LDLR endocytosis, but its action requires AP-2. Furthermore, the rate of LDLR endocytosis is decreased when Dab2 is absent and Dab2, but not ARH, catalyzes the efficient clustering of LDLR into coated pits. Dab2 activity requires its binding to clathrin, LDLR and phospholipids. Dab2 is also involved in moving LDLRs off filopodia. We suggest that Dab2 is a cargo-specific endocytic adaptor protein, stably associating with phospholipids and clathrin to sort LDLR to nascent-coated pits, whereas ARH might accelerate later steps in LDLR endocytosis in cooperation with AP-2.

Từ khóa


Tài liệu tham khảo

Apodaca, G. (2001). Endocytic traffic in polarized epithelial cells: role of the actin and microtubule cytoskeleton. Traffic2, 149-159.

Biemesderfer, D., Mentone, S. A., Mooseker, M. and Hasson, T. (2002). Expression of myosin VI within the early endocytic pathway in adult and developing proximal tubules. Am. J. Physiol. Renal Physiol.282, F785-F794.

Buss, F., Arden, S. D., Lindsay, M., Luzio, J. P. and Kendrick-Jones, J. (2001). Myosin VI isoform localized to clathrin-coated vesicles with a role in clathrin-mediated endocytosis. EMBO J.20, 3676-3684.

Chen, W. J., Goldstein, J. L. and Brown, M. S. (1990). NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J. Biol. Chem.265, 3116-3123.

Conner, S. D. and Schmid, S. L. (2003). Differential requirements for AP-2 in clathrin-mediated endocytosis. J. Cell Biol.162, 773-779.

Cuitino, L., Matute, R., Retamal, C., Bu, G., Inestrosa, N. C. and Marzolo, M. P. (2005). ApoER2 is endocytosed by a clathrin-mediated process involving the adaptor protein Dab2 independent of its Rafts' association. Traffic6, 820-838.

Davis, C. G., Lehrman, M. A., Russell, D. W., Anderson, R. G., Brown, M. S. and Goldstein, J. L. (1986). The J.D. mutation in familial hypercholesterolemia: amino acid substitution in cytoplasmic domain impedes internalization of LDL receptors. Cell45, 15-24.

Garcia, C. K., Wilund, K., Arca, M., Zuliani, G., Fellin, R., Maioli, M., Calandra, S., Bertolini, S., Cossu, F., Grishin, N. et al. (2001). Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science292, 1394-1398.

Garuti, R., Jones, C., Li, W. P., Michaely, P., Herz, J., Gerard, R. D., Cohen, J. C. and Hobbs, H. H. (2005). The modular adaptor protein autosomal recessive hypercholesterolemia (ARH) promotes low density lipoprotein receptor clustering into clathrin-coated pits. J. Biol. Chem.280, 40996-41004.

He, G., Gupta, S., Yi, M., Michaely, P., Hobbs, H. H. and Cohen, J. C. (2002). ARH is a modular adaptor protein that interacts with the LDL receptor, clathrin, and AP-2. J. Biol. Chem.277, 44044-44049.

Hinrichsen, L., Harborth, J., Andrees, L., Weber, K. and Ungewickell, E. J. (2003). Effect of clathrin heavy chain- and alpha-adaptin-specific small inhibitory RNAs on endocytic accessory proteins and receptor trafficking in HeLa cells. J. Biol. Chem.278, 45160-45170.

Huang, Y., Shah, V., Liu, T. and Keshvara, L. (2005). Signaling through Disabled 1 requires phosphoinositide binding. Biochem. Biophys. Res. Commun.331, 1460-1468.

Inoue, A., Sato, O., Homma, K. and Ikebe, M. (2002). DOC-2/DAB2 is the binding partner of myosin VI. Biochem. Biophys. Res. Commun.292, 300-307.

Jones, C., Hammer, R. E., Li, W. P., Cohen, J. C., Hobbs, H. H. and Herz, J. (2003). Normal sorting but defective endocytosis of the low density lipoprotein receptor in mice with autosomal recessive hypercholesterolemia. J. Biol. Chem.278, 29024-29030.

Keyel, P. A., Mishra, S. K., Roth, R., Heuser, J. E., Watkins, S. C. and Traub, L. M. (2006). A single common portal for Clathrin-mediated endocytosis of distinct cargo governed by cargo-selective adaptors. Mol. Biol. Cell17, 4300-4317.

Kibbey, R. G., Rizo, J., Gierasch, L. M. and Anderson, R. G. (1998). The LDL receptor clustering motif interacts with the clathrin terminal domain in a reverse turn conformation. J. Cell Biol.142, 59-67.

Kirchhausen, T. (1999). Adaptors for clathrin-mediated traffic. Annu. Rev. Cell Dev. Biol.15, 705-732.

Lakadamyali, M., Rust, M. J. and Zhuang, X. (2006). Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell124, 997-1009.

Li, Y., Marzolo, M. P., van Kerkhof, P., Strous, G. J. and Bu, G. (2000). The YXXL motif, but not the two NPXY motifs, serves as the dominant endocytosis signal for low density lipoprotein receptor-related protein. J. Biol. Chem.275, 17187-17194.

Li, Y., Lu, W., Marzolo, M. P. and Bu, G. (2001). Differential functions of members of the low density lipoprotein receptor family suggested by their distinct endocytosis rates. J. Biol. Chem.276, 18000-18006.

Maurer, M. E. and Cooper, J. A. (2005). Endocytosis of megalin by visceral endoderm cells requires the Dab2 adaptor protein. J. Cell Sci.118, 5345-5355.

Michaely, P., Li, W. P., Anderson, R. G., Cohen, J. C. and Hobbs, H. H. (2004). The modular adaptor protein ARH is required for low density lipoprotein (LDL) binding and internalization but not for LDL receptor clustering in coated pits. J. Biol. Chem.279, 34023-34031.

Mishra, S. K., Keyel, P. A., Hawryluk, M. J., Agostinelli, N. R., Watkins, S. C. and Traub, L. M. (2002a). Disabled-2 exhibits the properties of a cargo-selective endocytic clathrin adaptor. EMBO J.21, 4915-4926.

Mishra, S. K., Watkins, S. C. and Traub, L. M. (2002b). The autosomal recessive hypercholesterolemia (ARH) protein interfaces directly with the clathrin-coat machinery. Proc. Natl. Acad. Sci. USA99, 16099-16104.

Mishra, S. K., Keyel, P. A., Edeling, M. A., Dupin, A. L., Owen, D. J. and Traub, L. M. (2005). Functional dissection of an AP-2 beta2 appendage-binding sequence within the autosomal recessive hypercholesterolemia protein. J. Biol. Chem.280, 19270-19280.

Morris, S. M. and Cooper, J. A. (2001). Disabled-2 colocalizes with the LDLR in clathrin-coated pits and interacts with AP-2. Traffic2, 111-123.

Morris, S. M., Arden, S. D., Roberts, R. C., Kendrick-Jones, J., Cooper, J. A., Luzio, J. P. and Buss, F. (2002a). Myosin VI binds to and localises with Dab2, potentially linking receptor-mediated endocytosis and the actin cytoskeleton. Traffic3, 331-341.

Morris, S. M., Tallquist, M. D., Rock, C. O. and Cooper, J. A. (2002b). Dual roles for the Dab2 adaptor protein in embryonic development and kidney transport. EMBO J.21, 1555-1564.

Motley, A., Bright, N. A., Seaman, M. N. and Robinson, M. S. (2003). Clathrin-mediated endocytosis in AP-2-depleted cells. J. Cell Biol.162, 909-918.

Nagai, J., Christensen, E. I., Morris, S. M., Willnow, T. E., Cooper, J. A. and Nielsen, R. (2005). Mutually dependent localization of megalin and Dab2 in the renal proximal tubule. Am. J. Physiol. Renal Physiol.289, F569-F576.

Nagai, M., Meerloo, T., Takeda, T. and Farquhar, M. G. (2003). The adaptor protein ARH escorts megalin to and through endosomes. Mol. Biol. Cell14, 4984-4996.

Nesterov, A., Carter, R. E., Sorkina, T., Gill, G. N. and Sorkin, A. (1999). Inhibition of the receptor-binding function of clathrin adaptor protein AP-2 by dominant-negative mutant mu2 subunit and its effects on endocytosis. EMBO J.18, 2489-2499.

Norman, D., Sun, X. M., Bourbon, M., Knight, B. L., Naoumova, R. P. and Soutar, A. K. (1999). Characterization of a novel cellular defect in patients with phenotypic homozygous familial hypercholesterolemia. J. Clin. Invest.104, 619-628.

Owen, D. J., Vallis, Y., Pearse, B. M., McMahon, H. T. and Evans, P. R. (2000). The structure and function of the beta 2-adaptin appendage domain. EMBO J.19, 4216-4227.

Pathak, R. K., Yokode, M., Hammer, R. E., Hofmann, S. L., Brown, M. S., Goldstein, J. L. and Anderson, R. G. (1990). Tissue-specific sorting of the human LDL receptor in polarized epithelia of transgenic mice. J. Cell Biol.111, 347-359.

Pearse, B. M. (1988). Receptors compete for adaptors found in plasma membrane coated pits. EMBO J.7, 3331-3336.

Robinson, M. S. (2004). Adaptable adaptors for coated vesicles. Trends Cell Biol.14, 167-174.

Santolini, E., Salcini, A. E., Kay, B. K., Yamabhai, M. and Di Fiore, P. P. (1999). The EH network. Exp. Cell Res.253, 186-209.

Sorkin, A. (2004). Cargo recognition during clathrin-mediated endocytosis: a team effort. Curr. Opin. Cell Biol.16, 392-399.

Stolt, P. C., Vardar, D. and Blacklow, S. C. (2004). The dual-function disabled-1 PTB domain exhibits site independence in binding phosphoinositide and peptide ligands. Biochemistry43, 10979-10987.

Traub, L. M. (2003). Sorting it out: AP-2 and alternate clathrin adaptors in endocytic cargo selection. J. Cell Biol.163, 203-208.

Traub, L. M., Downs, M. A., Westrich, J. L. and Fremont, D. H. (1999). Crystal structure of the alpha appendage of AP-2 reveals a recruitment platform for clathrin-coat assembly. Proc. Natl. Acad. Sci. USA96, 8907-8912.

Warren, R. A., Green, F. A., Stenberg, P. E. and Enns, C. A. (1998). Distinct saturable pathways for the endocytosis of different tyrosine motifs. J. Biol. Chem.273, 17056-17063.

Wilund, K. R., Yi, M., Campagna, F., Arca, M., Zuliani, G., Fellin, R., Ho, Y. K., Garcia, J. V., Hobbs, H. H. and Cohen, J. C. (2002). Molecular mechanisms of autosomal recessive hypercholesterolemia. Hum. Mol. Genet.11, 3019-3030.

Wong, W. T., Schumacher, C., Salcini, A. E., Romano, A., Castagnino, P., Pelicci, P. G. and Di Fiore, P. (1995). A protein-binding domain, EH, identified in the receptor tyrosine kinase substrate Eps15 and conserved in evolution. Proc. Natl. Acad. Sci. USA92, 9530-9534.

Xu, M., Arnaud, L. and Cooper, J. A. (2005). Both the phosphoinositide and receptor binding activities of Dab1 are required for Reelin-stimulated Dab1 tyrosine phosphorylation. Brain Res. Mol. Brain Res.139, 300-305.

Xu, X. X., Yi, T., Tang, B. and Lambeth, J. D. (1998). Disabled-2 (Dab2) is an SH3 domain-binding partner of Grb2. Oncogene16, 1561-1569.

Yamabhai, M., Hoffman, N. G., Hardison, N. L., McPherson, P. S., Castagnoli, L., Cesareni, G. and Kay, B. K. (1998). Intersectin, a novel adaptor protein with two Eps15 homology and five Src homology 3 domains. J. Biol. Chem.273, 31401-31407.

Yun, M., Keshvara, L., Park, C. G., Zhang, Y. M., Dickerson, J. B., Zheng, J., Rock, C. O., Curran, T. and Park, H. W. (2003). Crystal structures of the Dab homology domains of mouse disabled 1 and 2. J. Biol. Chem.278, 36572-36581.

Zuliani, G., Arca, M., Signore, A., Bader, G., Fazio, S., Chianelli, M., Bellosta, S., Campagna, F., Montali, A., Maioli, M. et al. (1999). Characterization of a new form of inherited hypercholesterolemia: familial recessive hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol.19, 802-809.