Cơ chế và tác động của myrislignan trên tế bào A549 in vitro và in vivo

Journal of Natural Medicines - Tập 71 - Trang 76-85 - 2016
XinGang Lu1, Liu Yang2, JingXian Chen3, JiAn Zhou4, XiaoDan Tang4, YingGang Zhu4, HongFu Qiu1, Jie Shen5
1Department of Traditional Chinese Medicine, HuaDong Hospital, FuDan University, Shanghai, People’s Republic of China
2Department of Tumor, BaoShan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, People’s Republic of China
3Department of Traditional Chinese Medicine, RuiJin Hospital, JiaoTong University School of Medicine, Shanghai, People’s Republic of China
4Department of Pulmonary, HuaDong Hospital, FuDan University, Shanghai, People’s Republic of China
5Department of Pharmacy, HuaDong Hospital, FuDan University, Shanghai, People’s Republic of China

Tóm tắt

Myrislignan là một hợp chất tự nhiên còn ít được nghiên cứu về dược lý. Trong nghiên cứu của chúng tôi, chúng tôi đã điều tra tác động của myrislignan trong việc kích thích apoptosis ở tế bào A549 cả in vitro và in vivo. Myrislignan ức chế sự sinh sản của tế bào A549 theo kiểu phụ thuộc vào liều lượng và thời gian được thử nghiệm bằng phương pháp MTT. Ngoài ra, phân tích dòng tế bào bằng Hoechst cho thấy myrislignan đã đáng kể kích thích apoptosis và ngăn chặn chu kỳ tế bào ở tế bào A549. Quá trình apoptosis và ức chế sinh sản tế bào được trung gian bởi sự kích hoạt kinase kích thích bởi tác nhân sinh trưởng và sự ức chế của con đường tín hiệu thụ thể yếu tố tăng trưởng biểu bì, sự thay đổi tiềm năng màng ty thể, sự giải phóng c-Myc, sự giảm mức của protein chống apoptosis Bcl-2, và sự tăng mức của protein kích thích apoptosis Bax. Kết luận là, những kết quả đó tiết lộ một cơ chế tiềm năng cho tác dụng chống ung thư của myrislignan trên ung thư phổi ở người, đồng thời cho thấy myrislignan có thể là một hợp chất triển vọng cho việc điều trị ung thư phổi.

Từ khóa

#myrislignan #apoptosis #tế bào A549 #ung thư phổi #protein Bcl-2 #protein Bax #tín hiệu thụ thể yếu tố tăng trưởng biểu bì #kinase kích thích bởi tác nhân sinh trưởng

Tài liệu tham khảo

Wang Y, Sun Y (2015) Clinical experiences with molecular targeted therapy in lung cancer in China. Thorac Cancer 6(4):379–384 Johnson DH, Schiller JH, Bunn PA Jr (2014) Recent clinical advances in lung cancer management. J Clin Oncol 32(10):973–982 DeSantis C, Naishadham D, Jemal A (2013) Cancer statistics for African Americans, 2013. CA Cancer J Clin 63(3):151–166 Spira A, Halmos B, Powell CA (2015) Update in lung cancer 2014. Am J Respir Crit Care Med 192(3):283–294 Sundar R, Soong R, Cho BC, Brahmer JR, Soo RA (2014) Immunotherapy in the treatment of non-small cell lung cancer. Lung Cancer 85(2):101–109 Byers LA, Rudin CM (2015) Small cell lung cancer: where do we go from here? Cancer 121(5):664–672 Suda K, Sato K, Mizuuchi H, Kobayashi Y, Shimoji M, Tomizawa K, Takemoto T, Iwasaki T, Sakaguchi M, Mitsudomi T (2014) Recent evidence, advances, and current practices in surgical treatment of lung cancer. Respir Investig 52(6):322–329 Badr CE, Van Hoppe S, Dumbuya H, Tjon-Kon-Fat LA, Tannous BA (2013) Targeting cancer cells with the natural compound obtusaquinone. J Natl Cancer Inst 105(9):643–653 Yang XW, Huang X, Ahmat M (2008) New neolignan from seed of Myristica fragrans. Zhongguo Zhong Yao Za Zhi 33(4):397–402 Li F, Yang XW (2008) Quantification of myrislignan in rat plasma by solid-phase extraction and reversed-phase high-performance liquid chromatography. Biomed Chromatogr 22(6):601–605 Du SS, Yang K, Wang CF, You CX, Geng ZF, Guo SS, Deng ZW, Liu ZL (2014) Chemical constituents and activities of the essential oil from Myristica fragrans against cigarette beetle Lasioderma serricorne. Chem Biodivers 11(9):1449–1456 Cao GY, Xu W, Yang XW, Gonzalez FJ, Li F (2015) New neolignans from the seeds of Myristica fragrans that inhibit nitric oxide production. Food Chem 173:231–237 Li F, Yang XW (2008) Biotransformation of myrislignan by rat liver microsomes in vitro. Phytochemistry 69(3):765–771 Jin H, Zhu ZG, Yu PJ, Wang GF, Zhang JY, Li JR, Ai RT, Li ZH, Tian YX, Zhang WX, Wu SG (2012) Myrislignan attenuates lipopolysaccharide-induced inflammation reaction in murine macrophage cells through inhibition of NF-kappaB signalling pathway activation. Phytother Res 26(9):1320–1326 Yang XW, Huang X, Ma L, Wu Q, Xu W (2010) The intestinal permeability of neolignans from the seeds of Myristica fragrans in the Caco-2 cell monolayer model. Planta Med 76(14):1587–1591 Wang Y, Liu JX, Zhang YB, Li F, Yang XW (2012) Determination and distribution study of myrislignan in rat tissues by RP-HPLC. Chromatographia 75:541–549 Chen Z, Huang X, Yang H, Ding W, Gao L, Ye Z, Zhang Y, Yu Y, Lou Y (2011) Anti-tumor effects of B-2, a novel 2,3-disubstituted 8-arylamino-3H-imidazo[4,5-g]quinazoline derivative, on the human lung adenocarcinoma A549 cell line in vitro and in vivo. Chem Biol Interact 189(1–2):90–99 Estaquier J, Vallette F, Vayssiere JL, Mignotte B (2012) The mitochondrial pathways of apoptosis. Adv Exp Med Biol 942:157–183 Morabito A, Carillio G, Daniele G, Piccirillo MC, Montanino A, Costanzo R, Sandomenico C, Giordano P, Normanno N, Perrone F, Rocco G, Di Maio M (2014) Treatment of small cell lung cancer. Crit Rev Oncol Hematol 91(3):257–270 Chaveli-López B (2014) Oral toxicity produced by chemotherapy: a systematic review. J Clin Exp Dent 6(1):e81–e90 Tan W, Lu J, Huang M, Li Y, Chen M, Wu G, Gong J, Zhong Z, Xu Z, Dang Y, Guo J, Chen X, Wang Y (2011) Anti-cancer natural products isolated from Chinese medicinal herbs. Chin Med 6(1):27 Himeji M, Ohtsuki T, Fukazawa H, Tanaka M, Yazaki S, Ui S, Nishio K, Yamamoto H, Tasaka K, Mimura A (2007) Difference of growth-inhibitory effect of Scutellaria baicalensis-producing flavonoid wogonin among human cancer cells and normal diploid cell. Cancer Lett 245(1–2):269–274 Griffin C, Karnik A, McNulty J, Pandey S (2011) Pancratistatin selectively targets cancer cell mitochondria and reduces growth of human colon tumor xenografts. Mol Cancer Ther 10(1):57–68 Kalemkerian GP (2014) Advances in pharmacotherapy of small cell lung cancer. Expert Opin Pharmacother 15(16):2385–2396 Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, Parks WP (1973) In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 51(5):1417–1423 Lurje G, Lenz HJ (2009) EGFR signaling and drug discovery. Oncology 77(6):400–410 Uribe P, Gonzalez S (2011) Epidermal growth factor receptor (EGFR) and squamous cell carcinoma of the skin: molecular bases for EGFR-targeted therapy. Pathol Res Pract 207(6):337–342 Bai Y, Yu W, Han N, Yang F, Sun Y, Zhang L, Zhao M, Huang L, Zhou A, Wang F, Li X (2013) Effects of semaphorin 3A on retinal pigment epithelial cell activity. Invest Ophthalmol Vis Sci 54(10):6628–6638 Kuroda S, Tam J, Roth JA, Sokolov K, Ramesh R (2014) EGFR-targeted plasmonic magnetic nanoparticles suppress lung tumor growth by abrogating G2/M cell-cycle arrest and inducing DNA damage. Int J Nanomed 9:3825–3839 Lee H, Lee H, Chin H, Kim K, Lee D (2014) ERBB3 knockdown induces cell cycle arrest and activation of Bak and Bax-dependent apoptosis in colon cancer cells. Oncotarget 5(13):5138–5152 Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos B (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352(8):786–792 Huguet F, Fernet M, Giocanti N, Favaudon V, Larsen AK (2016) Afatinib, an irreversible EGFR family inhibitor, shows activity toward pancreatic cancer cells, alone and in combination with radiotherapy, independent of KRAS status. Target Oncol 11(3):371–381 Zheng YT, Yang HY, Li T, Zhao B, Shao TF, Xiang XQ, Cai WM (2015) Amiloride sensitizes human pancreatic cancer cells to erlotinib in vitro through inhibition of the PI3K/AKT signaling pathway. Acta Pharmacol Sin 36(5):614–626 Normanno N, Campiglio M, Maiello MR, De Luca A, Mancino M, Gallo M, D’Alessio A, Menard S (2008) Breast cancer cells with acquired resistance to the EGFR tyrosine kinase inhibitor gefitinib show persistent activation of MAPK signaling. Breast Cancer Res Treat 112(1):25–33 Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26(22):3279–3290 Burova EB, Smirnova IS, Gonchar IV, Shatrova AN, Nikolsky NN (2011) Inhibition of the EGF receptor and ERK1/2 signaling pathways rescues the human epidermoid carcinoma A431 cells from IFNgamma-induced apoptosis. Cell Cycle 10(13):2197–2205 Xu T, Wang NS, Fu LL, Ye CY, Yu SQ, Mei CL (2012) Celecoxib inhibits growth of human autosomal dominant polycystic kidney cyst-lining epithelial cells through the VEGF/Raf/MAPK/ERK signaling pathway. Mol Biol Rep 39(7):7743–7753 Zhang XJ, Zhang L, Liu YP, Xu HM, Sun P, Song JG, Luo YH (2013) Molecular mechanism of chemosensitization to paclitaxel in human melanoma cells induced by targeting the EGFR signaling pathway. Zhonghua Zhong Liu Za Zhi 35(3):181–186 Jiang Y, Zhang Y, Luan J, Duan H, Zhang F, Yagasaki K, Zhang G (2010) Effects of bufalin on the proliferation of human lung cancer cells and its molecular mechanisms of action. Cytotechnology 62(6):573–583 Ashkenazi A, Salvesen G (2014) Regulated cell death: signaling and mechanisms. Annu Rev Cell Dev Biol 30:337–356 Green DR, Llambi F (2015) Cell death signaling. Cold Spring Harb Perspect Biol 7(12). pii: a006080 Li L, Gao Y, Zhang L, Zeng J, He D, Sun Y (2008) Silibinin inhibits cell growth and induces apoptosis by caspase activation, down-regulating survivin and blocking EGFR-ERK activation in renal cell carcinoma. Cancer Lett 272(1):61–69