The Zero-divisor Graphs of Posets and an Application to Semigroups

Dancheng Lu1, Tingzeng Wu2
1Department of Mathematics, Soochow University, Suzhou, People’s Republic of China
2Department of Mathematics, Shanghai Jiaotong University, Shanghai, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anderson D.F., Levy J., Shapiro R.: Zero-divisor graphs, von Neumann regular rings, and Boolean algebras. J. Pure Appl. Algebra 180, 221–241 (2003)

Anderson D.D., Naseer M.: Beck’s coloring of a commutative ring. J. Algebra 159, 500–514 (1993)

Beck I.: Coloring of commutative rings. J. Algebra 116, 208–226 (1988)

DeMeyer F.R., DeMeyer L.: Zero-divisor graphs of semigroups. J. Algebra 283, 190–198 (2005)

Nimbhorkar S.K., Wasadikhar M.P., Demeyer L.: Coloring of meet-semilattices. ARS Comb. 84, 97–104 (2007)

Dilworth R.P.: A decomposition theorem for partially ordered sets. Ann. Math. 51(2), 161–166 (1950)

DeMeyer F.R., McKenzie T., Schneider K.: The zero-divisor graph of a commutative semigroup. Semigroup Forum 65, 206–214 (2002)

Halaš R.: On extensions of ideals in posets. Discrete Math. 308, 4972–4977 (2008)

Halaš R.: Ideals and annihilators in ordered sets. Czech. Math. J. 45, 127–134 (1995)

Halaš R., Lihová J.: On weakly-cut stable maps. Inf. Sci. 180, 971–983 (2010)

Halaš R., Jukl M.: On Beck’s coloring of posets. Discrete Math. 309, 4584–4589 (2009)

Halaš, R., Länger, H.: The zero-divisor graph of a qoset. Order (2009). doi: 10.1007/s11083009-9120-1

van Lint, J.H., Wilson, R.M.: A Course in Combinatorics. Cambridge University Press, Cambridge (2001)

Wu T.S., Lu D.C.: Sub-semigroups of determined by the zero-divisor graph. Discrete Math. 308, 5122–5135 (2008)