The YMgB5O10 crystal preparation and attractive multi-wavelength emission characteristics of doping Nd3+ ions

Journal of Materials Chemistry C - Tập 9 Số 6 - Trang 1945-1957
Shijia Sun1,2,3, Qi Wei1,2,3, Bingxuan Li1,4,5, Xingjun Shi1,2,3, Feifei Yuan1,4,5, Fei Lou1,6,7, Lizhen Zhang1,4,5, Zhoubin Lin1,4,5, Degao Zhong1,2,3, Yisheng Huang1,4,5, Bing Teng1,2,3
1China
2College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, National Demonstration Center for Experimental Applied Physics Education, Qingdao University, Qingdao, 266071, China
3Qingdao 266071
4Fuzhou 350002
5Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
6Qingdao 266061
7School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China

Tóm tắt

YMB and Nd:YMB crystals with excellent physicochemical properties have been grown by TSSG method. The intense multi-wavelength emissions reveal the potential of THz technology.

Từ khóa


Tài liệu tham khảo

Ferguson, 2003, Nat. Mater., 1, 26, 10.1038/nmat708

Woolard, 2005, Proc. IEEE, 93, 1722, 10.1109/JPROC.2005.853539

Siegel, 2002, IEEE Trans. Microwave Theory Tech., 50, 910, 10.1109/22.989974

Shi, 2003, Appl. Phys. Lett., 83, 848, 10.1063/1.1596730

Taniuchi, 2004, Electron. Lett., 40, 60, 10.1049/el:20040036

Saha, 2006, Opt. Express, 14, 4721, 10.1364/OE.14.004721

Chen, 2013, Appl. Phys. B: Lasers Opt., 112, 55, 10.1007/s00340-013-5396-3

Yu, 2014, Laser Photonics Rev., 8, 847, 10.1002/lpor.201400022

Chen, 2017, J. Mater. Chem. C, 5, 3079, 10.1039/C6TC05657A

Wang, 2020, J. Mater. Chem. C, 8, 2343, 10.1039/C9TC05899K

Wang, 2020, J. Mater. Chem. C, 8, 1608, 10.1039/C9TC06117G

Ju, 2017, J. Mater. Chem. C, 5, 7174, 10.1039/C7TC01911D

Rey-García, 2020, J. Mater. Chem. C, 8, 2065, 10.1039/C9TC05910E

Wang, 2019, J. Mater. Chem. C, 7, 11824, 10.1039/C9TC04371C

Wang, 2019, Opt. Lett., 44, 2153, 10.1364/OL.44.002153

Volkova, 2017, CrystEngComm, 19, 1071, 10.1039/C6CE02390H

Sun, 2017, RSC Adv., 7, 32044, 10.1039/C7RA04768A

Danailov, 1992, Appl. Phys. Lett., 61, 746, 10.1063/1.107785

Chen, 2000, Appl. Phys. B: Lasers Opt., 70, 475, 10.1007/s003400050847

Chen, 2002, Opt. Lett., 27, 1809, 10.1364/OL.27.001809

Wu, 2009, Opt. Express, 17, 6004, 10.1364/OE.17.006004

Cho, 2014, Opt. Express, 22, 25318, 10.1364/OE.22.025318

Zhao, 2014, Opt. Express, 22, 2228, 10.1364/OE.22.002228

Yu, 2009, Opt. Lett., 34, 151, 10.1364/OL.34.000151

Brenier, 2009, Opt. Express, 17, 18730, 10.1364/OE.17.018730

Saubat, 1980, J. Solid State Chem., 34, 271, 10.1016/0022-4596(80)90425-9

Sun, 2020, J. Mater. Chem. C, 8, 7104, 10.1039/D0TC00709A

Fan, 2007, J. Alloys Compd., 436, 252, 10.1016/j.jallcom.2006.07.054

Fan, 2005, Chin. J. Struct. Chem., 23, 419

Huang, 2017, Materials, 11, 25, 10.3390/ma11010025

Huang, 2017, J. Lumin., 188, 7, 10.1016/j.jlumin.2017.03.070

You, 2017, Opt. Mater. Express, 7, 2760, 10.1364/OME.7.002760

Huang, 2015, J. Alloys Compd., 646, 1083, 10.1016/j.jallcom.2015.06.196

Chen, 2015, Opt. Lett., 40, 4659, 10.1364/OL.40.004659

Chen, 2019, Laser Phys., 29, 035801, 10.1088/1555-6611/aaf91f

Huang, 2017, J. Alloys Compd., 695, 215, 10.1016/j.jallcom.2016.10.115

Chen, 2017, Opt. Express, 25, 19320, 10.1364/OE.25.019320

Chen, 2018, Opt. Express, 26, 19037, 10.1364/OE.26.019037

Huang, 2015, CrystEngComm, 17, 7392, 10.1039/C5CE01443C

Lou, 2020, Opt. Mater. Express, 10, 1061, 10.1364/OME.389740

Lou, 2017, Opt. Mater. Express, 7, 4183, 10.1364/OME.7.004183

Knitel, 2000, Nucl. Instrum. Methods Phys. Res., Sect. A, 443, 364, 10.1016/S0168-9002(99)01154-7

Zhou, 2007, Key Eng. Mater., 336–338, 597, 10.4028/www.scientific.net/KEM.336-338.597

Zhang, 2017, Powder Diffr., 32, 97, 10.1017/S0885715617000227

Sheldrick, 2015, Acta Crystallogr., Sect. C: Struct. Chem., 71, 3, 10.1107/S2053229614024218

Segall, 2002, J. Phys.: Condens. Matter, 14, 2717

Milman, 2000, Int. J. Quantum Chem., 77, 895, 10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C

Christ, 1977, Phys. Chem. Miner., 2, 59, 10.1007/BF00307525

Blatov, 2000, J. Appl. Crystallogr., 33, 1193, 10.1107/S0021889800007202

Yang, 2011, Laser Phys., 21, 750, 10.1134/S1054660X11070334

Zhu, 2016, CrystEngComm, 18, 2965, 10.1039/C6CE00611F

Li, 2007, J. Cryst. Growth, 307, 405, 10.1016/j.jcrysgro.2007.07.017

Xu, 2014, Optik, 125, 545, 10.1016/j.ijleo.2013.07.029

Tu, 2020, J. Cryst. Growth, 535, 125543, 10.1016/j.jcrysgro.2020.125543

Fujimoto, 2010, IEEE Trans. Nucl. Sci., 57, 1264, 10.1109/TNS.2009.2035695

Liu, 2013, Mater. Res. Innovations, 15, 140, 10.1179/143307511X12998222919038

Xu, 2019, J. Lumin., 212, 279, 10.1016/j.jlumin.2019.04.027

Ye, 2005, Chem. Mater., 17, 2687, 10.1021/cm050090c

Lu, 2018, J. Am. Chem. Soc., 140, 13089, 10.1021/jacs.8b08803

Ma, 2018, Inorg. Chem., 57, 11839, 10.1021/acs.inorgchem.8b02044

Xu, 2019, Chem. Mater., 32, 906, 10.1021/acs.chemmater.9b05267

Lukasiewicz, 2003, Proc. SPIE, 5230, 1

Panahibakhsh, 2014, Opt. Quantum Electron., 47, 1101, 10.1007/s11082-014-9966-3

Bass, 1975, IEEE J. Quantum Electron., QE-11, 938, 10.1109/JQE.1975.1068554

O'Connor, 1966, Appl. Phys. Lett., 9, 407, 10.1063/1.1754631

Omatsu, 2004, Opt. Commun., 232, 327, 10.1016/j.optcom.2003.12.042

Ye, 1999, J. Cryst. Growth, 197, 228, 10.1016/S0022-0248(98)00947-6

Zhang, 1999, J. Cryst. Growth, 205, 453, 10.1016/S0022-0248(99)00283-3

Li, 2003, J. Cryst. Growth, 250, 458, 10.1016/S0022-0248(02)02485-5

Blows, 2003, Appl. Phys. B: Lasers Opt., 76, 289, 10.1007/s00340-002-1092-4

Ge, 2007, J. Appl. Crystallogr., 40, 125, 10.1107/S0021889806045407

Druon, 2002, Opt. Lett., 27, 197, 10.1364/OL.27.000197

Pan, 2013, J. Cryst. Growth, 363, 176, 10.1016/j.jcrysgro.2012.10.034

Pan, 2014, J. Alloys Compd., 607, 16, 10.1016/j.jallcom.2014.04.066

Pan, 2013, Opt. Express, 21, 6092

Pan, 2011, Appl. Phys. B: Lasers Opt., 106, 197, 10.1007/s00340-011-4737-3

Kuwano, 2004, J. Cryst. Growth, 260, 159, 10.1016/j.jcrysgro.2003.08.060

Veronesi, 2012, Opt. Commun., 258, 315, 10.1016/j.optcom.2011.09.032

Gong, 2009, J. Opt. Soc. Am. B, 26, 259, 10.1364/JOSAB.26.000259

Wang, 2001, J. Cryst. Growth, 233, 755, 10.1016/S0022-0248(01)01613-X

Judd, 1962, Phys. Rev., 127, 750, 10.1103/PhysRev.127.750

Ofelt, 1962, J. Chem. Phys., 37, 511, 10.1063/1.1701366

Sun, 2013, J. Alloys Compd., 551, 229, 10.1016/j.jallcom.2012.09.146

Kaminskii, 1974, Phys. Status Solidi A, 26, 593, 10.1002/pssa.2210260224

Xia, 2000, J. Appl. Phys., 88, 5134, 10.1063/1.1314331

Aull, 1982, IEEE J. Quantum Electron., 18, 925, 10.1109/JQE.1982.1071611

Yasyukevich, 2004, J. Appl. Spectrosc., 71, 202, 10.1023/B:JAPS.0000032875.04400.a0

Chen, 2001, J. Phys. D: Appl. Phys., 13, 1171

Zhang, 2012, Phys. Status Solidi A, 209, 1128, 10.1002/pssa.201127735

Jaque, 1997, J. Phys. D: Appl. Phys., 9, 9715

Hammons, 2000, IEEE J. Quantum Electron., 36, 991, 10.1109/3.853561

Mougel, 1997, Opt. Mater., 8, 161, 10.1016/S0925-3467(97)00019-0

Wei, 2019, Inorg. Chem., 58, 3527, 10.1021/acs.inorgchem.9b00101

Miyakawa, 1970, Phys. Rev. B: Solid State, 1, 2961, 10.1103/PhysRevB.1.2961