The Versatile Mutational Resistome of Pseudomonas aeruginosa

Carla López-Causapé1, Gabriel Cabot1, Ester del Barrio-Tofiño1, Antonio Oliver1
1Servicio de Microbiología y Unidad de Investigación, Hospital Universitari Son Espases, Institut d'Investigació Sanitaria Illes Balears, Palma de Mallorca, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alvarez-Ortega, 2010, Genetic determinants involved in the susceptibility of Pseudomonas aeruginosa to beta-lactam antibiotics., Antimicrob. Agents Chemother., 54, 4159, 10.1128/AAC.00257-10

Bagge, 2002, Constitutive high expression of chromosomal beta-lactamase in Pseudomonas aeruginosa caused by a new insertion sequence (IS1669) located in ampD., Antimicrob. Agents Chemother., 46, 3406, 10.1128/AAC.46.11.3406-3411.2002

Barrow, 2009, Alterations in two-component regulatory systems of phoPQ and pmrAB are associated with polymyxin B resistance in clinical isolates of Pseudomonas aeruginosa., Antimicrob. Agents Chemother., 53, 5150, 10.1128/AAC.00893-09

Bassetti, 2012, Management of ventilator-associated pneumonia: epidemiology, diagnosis and antimicrobial therapy., Expert Rev. Anti. Infect. Ther., 10, 585, 10.1586/eri.12.36

Berrazeg, 2015, Mutations in β-Lactamase AmpC increase resistance of Pseudomonas aeruginosa isolates to antipseudomonal cephalosporins., Antimicrob. Agents Chemother., 59, 6248, 10.1128/AAC.00825-15

Bolard, 2017, Mutations in gene fusA1 as a novel mechanism of aminoglycoside resistance in clinical strains of Pseudomonas aeruginosa., Antimicrob. Agents Chemother., 62, 10.1128/AAC.01835-17

Bruchmann, 2013, Quantitative contributions of target alteration and decreased drug accumulation to Pseudomonas aeruginosa fluoroquinolone resistance., Antimicrob. Agents Chemother., 57, 1361, 10.1128/AAC.01581-12

Cabot, 2014, Pseudomonas aeruginosa ceftolozane-tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC., Antimicrob. Agents Chemother., 58, 3091, 10.1128/AAC.02462-13

Cabot, , Evolution of Pseudomonas aeruginosa antimicrobial resistance and fitness under low and high mutation rates., Antimicrob. Agents Chemother., 60, 1767, 10.1128/AAC.02676-15

Cabot, , Deciphering the resistome of the widespread Pseudomonas aeruginosa Sequence Type 175 international high-risk clone through whole-genome sequencing., Antimicrob. Agents Chemother., 60, 7415, 10.1128/AAC.01720-16

Cai, 2017, Activity of colistin alone or in combination with rifampicin or meropenem in a carbapenem-resistant bioluminescent Pseudomonas aeruginosa intraperitoneal murine infection model., J. Antimicrob. Chemother., 73, 456, 10.1093/jac/dkx399

Castañeda-García, 2009, The glycerol-3-phosphate permease GlpT is the only fosfomycin transporter in Pseudomonas aeruginosa., J. Bacteriol., 191, 6968, 10.1128/JB.00748-09

Castanheira, 2014, Epidemiology and carbapenem resistance mechanisms of carbapenem-non-susceptible Pseudomonas aeruginosa collected during 2009-11 in 14 European and Mediterranean countries., J. Antimicrob. Chemother., 69, 1804, 10.1093/jac/dku048

Chen, 2016, Penicillin-Binding Protein 3 is essential for growth of Pseudomonas aeruginosa., Antimicrob. Agents Chemother., 61, 10.1128/AAC.01651-16

Chung, 2012, Genomic variation among contemporary Pseudomonas aeruginosa isolates from chronically infected cystic fibrosis patients., J. Bacteriol., 194, 4857, 10.1128/JB.01050-12

D’Costa, 2006, Sampling the antibiotic resistome., Science, 311, 374, 10.1126/science.1120800

Del Barrio-Tofiño, 2017, Genomics and susceptibility profiles of extensively drug-resistant Pseudomonas aeruginosa isolates from Spain., Antimicrob. Agents Chemother., 61, 10.1128/AAC.01589-17

Deplano, 2005, Molecular characterization of an epidemic clone of panantibiotic-resistant Pseudomonas aeruginosa., J. Clin. Microbiol., 43, 1198, 10.1128/JCM.43.3.1198-1204.2005

Diaz Caballero, 2015, Selective sweeps and parallel pathoadaptation drive Pseudomonas aeruginosa evolution in the cystic fibrosis lung., mBio, 6, 10.1128/mBio.00981-15

Döring, 2011, Differential adaptation of microbial pathogens to airways of patients with cystic fibrosis and chronic obstructive pulmonary disease., FEMS Microbiol. Rev., 35, 124, 10.1111/j.1574-6976.2010.00237.x

Dötsch, 2009, Genomewide identification of genetic determinants of antimicrobial drug resistance in Pseudomonas aeruginosa., Antimicrob. Agents Chemother., 53, 2522, 10.1128/AAC.00035-09

Dößelmann, 2017, Rapid and consistent evolution of colistin resistance in extensively drug-resistant Pseudomonas aeruginosa during morbidostat culture., Antimicrob. Agents Chemother., 61, 10.1128/AAC.00043-17

El’Garch, 2007, Cumulative effects of several nonenzymatic mechanisms on the resistance of Pseudomonas aeruginosa to aminoglycosides., Antimicrob. Agents Chemother., 51, 1016, 10.1128/AAC.00704-06

Fajardo, 2008, The neglected intrinsic resistome of bacterial pathogens., PLoS One, 3, 10.1371/journal.pone.0001619

Feng, 2016, Dynamics of mutations during development of resistance by Pseudomonas aeruginosa against five antibiotics., Antimicrob. Agents Chemother., 60, 4229, 10.1128/AAC.00434-16

Fournier, 2013, Complexity of resistance mechanisms to imipenem in intensive care unit strains of Pseudomonas aeruginosa., J. Antimicrob. Chemother., 68, 1772, 10.1093/jac/dkt098

Fraile-Ribot, , Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa., J. Antimicrob. Chemother., 10.1093/jac/dkx424

Fraile-Ribot, , In vivo emergence of resistance to novel cephalosporin-β-Lactamase inhibitor combinations through the duplication of amino acid D149 from OXA-2 β-Lactamase (OXA-539) in Sequence Type 235 Pseudomonas aeruginosa., Antimicrob. Agents Chemother., 61, 10.1128/AAC.01117-17

Greipel, 2016, Molecular epidemiology of mutations in antimicrobial resistance loci of Pseudomonas aeruginosa isolates from airways of Cystic Fibrosis patients., Antimicrob. Agents Chemother., 60, 6726, 10.1128/AAC.00724-16

Guénard, 2014, Multiple mutations lead to MexXY-OprM-dependent aminoglycoside resistance in clinical strains of Pseudomonas aeruginosa., Antimicrob. Agents Chemother., 58, 221, 10.1128/AAC.01252-13

Gutu, 2013, Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems., Antimicrob. Agents Chemother., 57, 2204, 10.1128/AAC.02353-12

Haidar, 2017, Ceftolozane-Tazobactam for the treatment of multidrug-resistant Pseudomonas aeruginosa infections: clinical effectiveness and evolution of resistance., Clin. Infect. Dis., 65, 110, 10.1093/cid/cix182

Han, 2010, Structural basis for effectiveness of siderophore-conjugated monocarbams against clinically relevant strains of Pseudomonas aeruginosa., Proc. Natl. Acad. Sci. U.S.A., 107, 22002, 10.1073/pnas.1013092107

Hocquet, 2016, Pyomelanin-producing Pseudomonas aeruginosa selected during chronic infections have a large chromosomal deletion which confers resistance to pyocins., Environ. Microbiol., 18, 3482, 10.1111/1462-2920.13336

Imamovic, 2017, Drug-driven phenotypic convergence supports rational treatment strategies of chronic infections., Cell, 172, 121, 10.1016/j.cell.2017.12.012

Jaillard, 2017, Correlation between phenotypic antibiotic susceptibility and the resistome in Pseudomonas aeruginosa., Int. J. Antimicrob. Agents, 50, 210, 10.1016/j.ijantimicag.2017.02.026

Jatsenko, 2010, Molecular characterization of Rif(r) mutations in Pseudomonas aeruginosa and Pseudomonas putida., Mutat. Res., 683, 106, 10.1016/j.mrfmmm.2009.10.015

Jeannot, 2017, Resistance to polymyxins in Gram-negative organisms., Int. J. Antimicrob. Agents, 49, 526, 10.1016/j.ijantimicag.2016.11.029

Jorth, 2017, Evolved aztreonam resistance is multifactorial and can produce hypervirulence in Pseudomonas aeruginosa., mBio, 8, 10.1128/mBio.00517-17

Juan, 2005, Molecular mechanisms of beta-lactam resistance mediated by AmpC hyperproduction in Pseudomonas aeruginosa clinical strains., Antimicrob. Agents Chemother., 49, 4733, 10.1128/AAC.49.11.4733-4738.2005

Juan, 2017, Diversity and regulation of intrinsic β-lactamases from non-fermenting and other Gram-negative opportunistic pathogens., FEMS Microbiol. Rev., 41, 781, 10.1093/femsre/fux043

Juarez, 2018, Constitutive activation of MexT by amino acid substitutions results in MexEF-OprN overproduction in clinical isolates of Pseudomonas aeruginosa., Antimicrob. Agents Chemother., 10.1128/AAC.02445-17

Juarez, 2017, Toxic electrophiles induce expression of the multidrug efflux pump MexEF-OprN in Pseudomonas aeruginosa through a novel transcriptional regulator, CmrA., Antimicrob. Agents Chemother., 61, 10.1128/AAC.00585-17

Kos, 2015, The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility., Antimicrob. Agents Chemother., 59, 427, 10.1128/AAC.03954-14

Lahiri, 2014, Avibactam and class C β-lactamases: mechanism of inhibition, conservation of the binding pocket, and implications for resistance., Antimicrob. Agents Chemother., 58, 5704, 10.1128/AAC.03057-14

Lau, 2015, AmgRS-mediated envelope stress-inducible expression of the mexXY multidrug efflux operon of Pseudomonas aeruginosa., Microbiol. Open, 4, 121, 10.1002/mbo3.226

Lee, 2014, Mutations and expression of PmrAB and PhoPQ related with colistin resistance in Pseudomonas aeruginosa clinical isolates., Diagn. Microbiol. Infect. Dis., 78, 271, 10.1016/j.diagmicrobio.2013.11.027

Li, 2015, The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria., Clin. Microbiol. Rev., 28, 337, 10.1128/CMR.00117-14

Lister, 2009, Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms., Clin. Microbiol. Rev., 22, 582, 10.1128/CMR.00040-09

López-Causapé, 2018, Evolution of the Pseudomonas aeruginosa aminoglycoside mutational resistome in vitro and in the cystic fibrosis setting., Antimicrob. Agents Chemother., 10.1128/AAC.02583-17

López-Causapé, 2017, Evolution of the Pseudomonas aeruginosa mutational resistome in an international Cystic Fibrosis clone., Sci. Rep., 7, 10.1038/s41598-017-05621-5

Maciá, 2005, Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections., Antimicrob. Agents Chemother., 49, 3382, 10.1128/AAC.49.8.3382-3386.2005

Markussen, 2014, Environmental heterogeneity drives within-host diversification and evolution of Pseudomonas aeruginosa., mBio., 5, 10.1128/mBio.01592-14

Michalopoulos, 2011, The revival of fosfomycin., Int. J. Infect. Dis., 15, 10.1016/j.ijid.2011.07.007

Mistry, 2013, High-level pacidamycin resistance in Pseudomonas aeruginosa is mediated by an opp oligopeptide permease encoded by the opp-fabI operon., Antimicrob. Agents Chemother., 57, 5565, 10.1128/AAC.01198-13

Moskowitz, 2012, PmrB mutations promote polymyxin resistance of Pseudomonas aeruginosa isolated from colistin-treated cystic fibrosis patients., Antimicrob. Agents Chemother., 56, 1019, 10.1128/AAC.05829-11

Moya, 2009, Beta-lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein., PLoS Pathog., 5, 10.1371/journal.ppat.1000353

Mulet, 2011, Antagonistic interactions of Pseudomonas aeruginosa antibiotic resistance mechanisms in planktonic but not biofilm growth., Antimicrob. Agents Chemother., 55, 4560, 10.1128/AAC.00519-11

Muller, 2011, A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and β-lactams in Pseudomonas aeruginosa., Antimicrob Agents Chemother., 55, 1211, 10.1128/AAC.01252-10

Mustafa, 2017, Acquired resistance to macrolides in Pseudomonas aeruginosa from cystic fibrosis patients., Eur. Respir. J., 49, 10.1183/13993003.01847-2016

Olaitan, 2014, Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria., Front. Microbiol., 5, 10.3389/fmicb.2014.00643

Oliver, 2000, High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection., Science, 288, 1251, 10.1126/science.288.5469.1251

Oliver, 2015, The increasing threat of Pseudomonas aeruginosa high-risk clones., Drug Resist. Updat., 2, 41, 10.1016/j.drup.2015.08.002

Pál, 2015, Collateral sensitivity of antibiotic-resistant microbes., Trends Microbiol., 23, 401, 10.1016/j.tim.2015.02.009

Prickett, 2017, Aminoglycoside resistance of Pseudomonas aeruginosa in cystic fibrosis results from convergent evolution in the mexZ gene., Thorax, 72, 40, 10.1136/thoraxjnl-2015-208027

Richardot, 2015, Carbapenem resistance in cystic fibrosis strains of Pseudomonas aeruginosa as a result of amino acid substitutions in porin OprD., Int. J. Antimicrob. Agents, 45, 529, 10.1016/j.ijantimicag.2014.12.029

Rodríguez-Rojas, 2010, Assessing the emergence of resistance: the absence of biological cost in vivo may compromise fosfomycin treatments for P. aeruginosa infections., PLoS One, 5, 10.1371/journal.pone.0010193

Schurek, 2008, Novel genetic determinants of low-level aminoglycoside resistance in Pseudomonas aeruginosa., Antimicrob. Agents Chemother., 52, 4213, 10.1128/AAC.00507-08

Skiada, 2011, Adaptive resistance to cationic compounds in Pseudomonas aeruginosa., Int. J. Antimicrob. Agents, 37, 187, 10.1016/j.ijantimicag.2010.11.019

Suarez, 2011, A large sustained endemic outbreak of multiresistant Pseudomonas aeruginosa: a new epidemiological scenario for nosocomial acquisition., BMC Infect. Dis., 11, 10.1186/1471-2334-11-272

Vestergaard, 2016, Antibiotic combination therapy can select for broad-spectrum multidrug resistance in Pseudomonas aeruginosa., Int. J. Antimicrob. Agents, 47, 48, 10.1016/j.ijantimicag.2015.09.014

Vincent, 2003, Nosocomial infections in adult intensive-care units., Lancet, 361, 2068, 10.1016/S0140-6736(03)13644-6

Woodford, 2011, Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance., FEMS Microbiol. Rev., 35, 736, 10.1111/j.1574-6976.2011.00268.x

Yen, 2017, History of antibiotic adaptation influences microbial evolutionary dynamics during subsequent treatment., PLoS Biol., 15, 10.1371/journal.pbio.2001586