The Vector-Valued Big q-Jacobi Transform
Tóm tắt
Big q-Jacobi functions are eigenfunctions of a second-order q-difference operator L. We study L as an unbounded self-adjoint operator on an L
2-space of functions on ℝ with a discrete measure. We describe explicitly the spectral decomposition of L using an integral transform ℱ with two different big q-Jacobi functions as a kernel, and we construct the inverse of ℱ.
Tài liệu tham khảo
Andrews, G.E., Askey, R.: Classical orthogonal polynomials. In: Polynômes orthogonaux et applications. Lecture Notes in Math., vol. 1171, pp. 36–62. Springer, Berlin (1985)
Askey, R., Wilson, J.: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Am. Math. Soc. 54(319) (1985)
Braaksma, B.L.J., Meulenbeld, B.: Integral transforms with generalized Legendre functions as kernels. Compos. Math. 18, 235–287 (1967)
Dunford, N., Schwartz, J.T.: Linear Operators. Part II. Interscience, New York (1963)
Gasper, G., Rahman, M.: Basic Hypergeometric Series, 2nd edn. Cambridge University Press, Cambridge (2004)
Götze, F.: Verallgemeinerung einer Integraltransformation von Mehler-Fock durch den von Kuipers und Meulenbeld eingefürten Kern P m,n k (z). Indag. Math. 27, 396–404 (1965)
Groenevelt, W., Koelink, E., Rosengren, H.: Continuous Hahn functions as Clebsch–Gordan coefficients. In: Ismail, M.E.H., Koelink, E. (eds.) Theory and Applications of Special Functions. Dev. Math., vol. 13, pp. 221–284. Springer, New York (2005)
Gupta, D.P., Ismail, M.E.H., Masson, D.R.: Contiguous relations, basic hypergeometric functions, and orthogonal polynomials. III. Associated continuous dual q-Hahn polynomials. J. Comput. Appl. Math. 68, 115–149 (1996)
Kakehi, T.: Eigenfunction expansion associated with the Casimir operator on the quantum group SU q (1,1). Duke Math. J. 80, 535–573 (1995)
Kakehi, T., Masuda, T., Ueno, K.: Spectral analysis of a q-difference operator which arises from the quantum SU(1,1) group. J. Oper. Theory 33, 159–196 (1995)
Koekoek, R., Swarttouw, R.F.: The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Report 98-17, Technical University Delft, Delft (1998)
Koelink, E., Stokman, J.V.: The Askey–Wilson function transform. Int. Math. Res. Not., 1203–1227 (2001)
Koelink, E., Stokman, J.V.: The big q-Jacobi function transform. Constr. Approx. 19, 191–235 (2003)
Koornwinder, T.H.: Jacobi functions and analysis on noncompact semisimple Lie groups. In: Askey, R.A., Koornwinder, T.H., Schempp, W. (eds.) Special Functions: Group Theoretical Aspects and Applications, pp. 1–85. Reidel, Dordrecht (1984)
Martin, R.P.: On the decomposition of tensor products of principal series representations for real-rank one semisimple groups. Trans. Am. Math. Soc. 201, 177–211 (1975)
Neretin, Yu.A.: Some continuous analogs of the expansion in Jacobi polynomials and vector-valued orthogonal bases. Funct. Anal. Appl. 39(2), 106–119 (2005)
Pukánszky, L.: On the Kronecker products of irreducible representations of the 2×2 real unimodular group. I. Trans. Am. Math. Soc. 100, 116–152 (1961)
Weyl, H.: Über gewöhnliche lineare Differentialgleichungen mit singulare Stellen und ihre Eigenfunktionen (2. Note). Nachr. König. Gesell. Wiss. Göttingen. Math.-Phys. Kl., 442–467 (1910)