The Value of Subsidence Data in Ground Water Model Calibration

Ground Water - Tập 46 Số 4 - Trang 538-550 - 2008
Tingting Yan1, Thomas J. Burbey
1Department of Geosciences, Virginia Tech, Blacksburg, VA 24061 USA

Tóm tắt

AbstractThe accurate estimation of aquifer parameters such as transmissivity and specific storage is often an important objective during a ground water modeling investigation or aquifer resource evaluation. Parameter estimation is often accomplished with changes in hydraulic head data as the key and most abundant type of observation. The availability and accessibility of global positioning system and interferometric synthetic aperture radar data in heavily pumped alluvial basins can provide important subsidence observations that can greatly aid parameter estimation. The aim of this investigation is to evaluate the value of spatial and temporal subsidence data for automatically estimating parameters with and without observation error using UCODE‐2005 and MODFLOW‐2000. A synthetic conceptual model (24 separate cases) containing seven transmissivity zones and three zones each for elastic and inelastic skeletal specific storage was used to simulate subsidence and drawdown in an aquifer with variably thick interbeds with delayed drainage. Five pumping wells of variable rates were used to stress the system for up to 15 years. Calibration results indicate that (1) the inverse of the square of the observation values is a reasonable way to weight the observations, (2) spatially abundant subsidence data typically produce superior parameter estimates under constant pumping even with observation error, (3) only a small number of subsidence observations are required to achieve accurate parameter estimates, and (4) for seasonal pumping, accurate parameter estimates for elastic skeletal specific storage values are largely dependent on the quantity of temporal observational data and less on the quantity of available spatial data.

Từ khóa


Tài liệu tham khảo

Amelung F., 1999, Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer‐system deformation, Geology, 27, 483, 10.1130/0091-7613(1999)027<0483:STUADO>2.3.CO;2

10.1029/2007WR006152

10.1016/j.jhydrol.2006.03.035

10.1111/j.1745-6584.2001.tb00358.x

10.1016/j.jhydrol.2005.06.028

10.1109/TGRS.2003.813278

10.1109/36.898661

Galloway D.L., 2007, The application of satellite differential SAR interferometry‐derived ground displacements in hydrogeology, Hydrogeology Journal, 15, 133, 10.1007/s10040-006-0121-5

Galloway D.L., 1998, InSAR detection of system compaction and land subsidence, Antelope Valley, Mohave Desert, California, Water Resources Research, 34, 2573, 10.1029/98WR01285

Halford K.J. R.J.Laczniak andD.L.Galloway.2005.Hydraulic characterization of overpressured tuffs in central Yucca Flat Nevada Test Site Nye County Nevada. USGS Scientific Investigations Report 2005‐5211. Reston Virginia:USGS.

Hanson R.T.1989.Aquifer‐system compaction Tucson Basin and Avra Valley Arizona. USGS Water‐Resources Investigations Report 88‐4172. Reston Virginia:USGS.

Harbaugh A.W. E.R.Banta M.C.Hill andM.G.McDonald.2000.MODFLOW‐2000 the U.S. Geological Survey modular ground‐water model—User guide to modularization concepts and the ground‐water flow process. USGS Open‐File Report 00‐92. Reston Virginia:USGS.

Heywood C.E.1997.Piezometric‐extensometric estimations of specific storage in the Albuquerque Basin New Mexico. U.S. Geological Survey Subsidence Interest Group Conference Proceedings of the Technical Meeting. Open‐File Report 97‐47. Reston Virginia:USGS.

Hill M.C.1998.Methods and guidelines for effective model calibration. USGS Water‐Resources Investigations Report 98‐4005. Reston Virginia:USGS.

10.1002/0470041080

Hill M.C. E.R.Banta A.W.Harbaugh andE.R.Anderman.2000.MODFLOW‐2000. The U.S. Geological Survey Modular Ground‐Water model—User guide to the observation sensitivity and parameter‐estimation processes and three post‐processing programs. USGS Open‐File Report 00‐184. Reston Virginia:USGS.

10.1007/s10040-004-0409-2

10.1029/2001WR001252

Hoffmann J. S.A.Leake D.L.Galloway andA.M.Wilson.2003b.MODFLOW‐2000 ground‐water model—User guide to the subsidence and aquifer‐system compaction (SUB) package. USGS Open‐File Report 03‐233. Reston Virginia:USGS.

10.1029/2000WR900404

10.1080/02626669409492765

Ikehara M.E. S.K.Predmore andD.J.Swope.1997.Geodetic network to evaluate historical elevation changes and to monitor land subsidence in lower Coachella Valley California 1996. USGS Water‐Resources Investigations Report 97‐4237. Reston Virginia:USGS.

Leake S.A. andD.E.Prudic.1991.Documentation of a computer program to simulate aquifer‐system compaction using the modular finite‐difference ground‐water flow model. USGS Technical Water‐Resources Investigations Book 6. Reston Virginia:USGS.

Pavelko M.T.2004.Estimates of hydraulic properties from a one‐dimensional numerical model of vertical aquifer‐system deformation Lorenzi Site Las Vegas Nevada. USGS Water‐Resources Investigations Report 03‐4083. Reston Virginia:USGS.

10.1111/j.1745-6584.1997.tb00082.x

Poeter E.P. M.C.Hill E.R.Banta S.Mehl andS.Christensen.2005.UCODE_2005 and six other computer codes for universal sensitivity analysis calibration and uncertainty evaluation. USGS Techniques and Methods 6‐A11. Reston Virginia:USGS.

Poland J.F, 1972, Underground Waste Management and Environmental Implications, 50

10.1130/REG2-p187

10.1111/j.1745-6584.2004.tb02449.x

Riley F.S, 1984, 3rd International Symposium on Land Subsidence, Venice, Italy, 169

Riley F.S.1969.Analysis of borehole extensometer data from central California.International Association of Scientific Hydrology Publication 89. Washington D.C.:International Association of Scientific Hydrology.

Terzaghi K, 1925, Principles of soil mechanics: IV: Settlement and consolidation of clay, Engineering News-Record, 95, 874