The Universality of the Resonance Arrangement and Its Betti Numbers

Combinatorica - Tập 43 - Trang 277-298 - 2023
Lukas Kühne1,2
1Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
2Fakultät für Mathematik, Universität Bielefeld, Bielefeld, Germany

Tóm tắt

The resonance arrangement $$\mathcal {A}_n$$ is the arrangement of hyperplanes which has all non-zero 0/1-vectors in $$\mathbb {R}^n$$ as normal vectors. It is the adjoint of the Braid arrangement and is also called the all-subsets arrangement. The first result of this article shows that any rational hyperplane arrangement is the minor of some large enough resonance arrangement. Its chambers appear as regions of polynomiality in algebraic geometry, as generalized retarded functions in mathematical physics and as maximal unbalanced families that have applications in economics. One way to compute the number of chambers of any real arrangement is through the coefficients of its characteristic polynomial which are called Betti numbers. We show that the Betti numbers of the resonance arrangement are determined by a fixed combination of Stirling numbers of the second kind. Lastly, we develop exact formulas for the first two non-trivial Betti numbers of the resonance arrangement.

Tài liệu tham khảo

Aguiar, M., Mahajan, S.: Topics in Hyperplane Arrangements, Mathematical Surveys and Monographs, vol. 226. American Mathematical Society, Providence (2017) Billera, L.J., Billey, S.C., Tewari, V.: Boolean product polynomials and schur-positivity, arxiv:1806.02943 (2018) Brysiewicz, T., Eble, H., Kühne, L.: Enumerating chambers of hyperplane arrangements with symmetry, arxiv:2105.14542 (2021) Björner, A.: Positive Sum Systems, Combinatorial Methods in Topology and Algebra. Springer INdAM Ser., vol. 12, pp. 157–171. Springer, Cham (2015) Billera, L.J., Tatch Moore, J., Dufort Moraites, C., Wang, Y., Williams, K.: Maximal unbalanced families, arxiv:1209.2309 (2012) Billey, S.C., Rhoades, B., Tewari, V.: Boolean Product Polynomials, Schur Positivity, and Chern plethysm, Int. Math. Res. Not. IMRN , no. 21, pp. 16636–16670 (2021) Brylawski, T.: The broken-circuit complex. Trans. Am. Math. Soc. 234(2), 417–433 (1977) Cavalieri, R., Johnson, P., Markwig, H.: Wall crossings for double Hurwitz numbers. Adv. Math. 228(4), 1894–1937 (2011) Chroman, Z., Singhal, M.: Computations associated with the resonance arrangement, arxiv:2106.09940 (2021) Deza, A., Hao, M., Pournin, L.: Sizing the white whale, arxiv:2205.13309 (2022) Deza, A., Pournin, L., Rakotonarivo, R.: The vertices of primitive zonotopes, polytopes and discrete geometry. Contemp. Math. 764, 71–81 (2021) Early, N.: Canonical bases for permutohedral plates, arxiv:1712.08520 (2017) Evans, T.: What is Being Calculated with Thermal Field Theory? World Scientific, Singapore (1995) Geelen, J., Gerards, B., Whittle, G.: Solving Rota’s conjecture. Notices Am. Math. Soc. 61(7), 736–743 (2014) Gutekunst, S.C., Mészáros, K., Petersen, T.K.: Root cones and the resonance arrangement. Electron. J. Comb. 28 , no. 1, Paper No. 1.12, 39 (2021) Gendron, Q., Tahar, G.: Isoresidual fibration and resonance arrangements. Lett. Math. Phys. 112(2), 33 (2022) Jovović, V., Kilibarda, G.: On the number of Boolean functions in the Post classes F\(\mu \)8. Discret. Math. Appl. 9(6), 593–606 (1999) Kamiya, H., Takemura, A., Terao, H.: Ranking patterns of unfolding models of codimension one. Adv. Appl. Math. 47(2), 379–400 (2011) Kamiya, H., Takemura, A., Terao, H.: Arrangements stable under the Coxeter groups, Configuration spaces, CRM Series, vol. 14, Ed. Norm., Pisa, pp. 327–354 (2012) Liu, Z., Norledge, W., Ocneanu, A.: The adjoint braid arrangement as a combinatorial lie algebra via the steinmann relations, arxiv:1901.03243 (2019) Odlyzko, A.M.: On subspaces spanned by random selections of \(\pm 1\) vectors. J. Comb. Theory Ser. A 47(1), 124–133 (1988) Orlik, P., Terao, H.: Arrangements of Hyperplanes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300. Springer, Berlin (1992) Oxley, J.: Matroid Theory, Oxford Graduate Texts in Mathematics, vol. 21, 2nd edn. Oxford University Press, Oxford (2011) Proudfoot, N., Ramos, E.: Stability phenomena for resonance arrangements. Proc. Am. Math. Soc. Ser. B 8, 219–223 (2021) Sloane, N.J.A.: The on-line encyclopedia of integer sequences, http://oeis.org Shadrin, S., Shapiro, M., Vainshtein, A.: Chamber behavior of double Hurwitz numbers in genus 0. Adv. Math. 217(1), 79–96 (2008) Zaslavsky, T.: Facing up to arrangements: face-count formulas for partitions of space by hyperplanes. Mem. Am. Math. Soc. 1 , no. issue 1, 154, vii+102 (1975) Zuev, Y.A.: Methods of geometry and probabilistic combinatorics in threshold logic. Discret. Math. Appl. 2(4), 427–438 (1992)