The Unavoidable Condition… A Report on the Book
Tài liệu tham khảo
Azaïs, J.-M., Wschebor, M.: Level Sets and Extrema of Random Processes and Fields. Wiley, New York (2009)
Beltrán, C., Pardo, L.M.: Fast linear homotopy to find approximate zeros of polynomial systems. Found. Comput. Math. 11(1), 95–129 (2011)
Bürgisser, P., Cucker, F.: On a problem posed by Steve Smale. Ann. Math. 174(3), 1785–1836 (2011)
Dedieu, J.-P.: Condition operators, condition numbers and condition number theorem for the generalized eigenvalue problem. Linear Algebra Appl. 263, 1–24 (1997)
Gastinel, N.: Linear Numerical Analysis. Academic Press, San Diego (1970)
Renegar, J.: Incorporating condition measures into the complexity theory of linear programming. SIAM J. Optim. 5(3), 506–524 (1995)
Shub, M., Smale, S.: Complexity of Bézout’s theorem I: geometric aspects. J. Am. Math. Soc., 459–501 (1993)
Shub, M., Smale, S.: Complexity of Bézout’s theorem II: volumes and probabilities. Computational Algebraic Geometry, 267–285 (1993)
Shub, M., Smale, S.: Complexity of Bézout’s theorem III: condition number and packing. J. Complex. 9(1), 4–14 (1993)
Shub, M., Smale, S.: Complexity of Bézout’s theorem IV: probability of success; extensions. SIAM J. Numer. Anal. 33(1), 128–148 (1996)
Shub, M., Smale, S.: Complexity of Bézout’s theorem V: polynomial time. Theor. Comput. Sci. 133(1), 141–164 (1994)
Shub, M.: Complexity of Bézout’s theorem VI: Geodesics in the condition (number) metric. Found. Comput. Math. 9(2), 171–178 (2009)
Beltrán, C., Shub, M.: Complexity of Bézout’s theorem VII: distance estimates in the condition (number) metric. Found. Comput. Math. 9(2), 179–195 (2009)
Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time. http://arxiv.org/pdf/cs/0111050.pdf