The UU-test for statistical modeling of unimodal data
Tài liệu tham khảo
Adolfsson, 2019, To cluster, or not to cluster: an analysis of clusterability methods, Pattern Recognit., 88, 13, 10.1016/j.patcog.2018.10.026
Kalogeratos, 2012, Dip-means: an incremental clustering method for estimating the number of clusters, 2393
Hartigan, 1985, The dip test of unimodality, Ann. Stat., 13, 70, 10.1214/aos/1176346577
Siffer, 2018, Are your data gathered?, 2210
Dodge, 2008, Kolmogorov–Smirnov test, 283
Anderson, 1952, Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes, Ann. Math. Statist., 23, 193, 10.1214/aoms/1177729437
Shapiro, 1965, An analysis of variance test for normality (complete samples), Biometrika, 52, 591, 10.1093/biomet/52.3-4.591
Silverman, 1981, Using kernel density estimates to investigate multimodality, J. R. Stat. Soc., 43, 97
Hall, 2001, On the calibration of Silverman’s test for multimodality, Stat. Sin., 515
Muller, 1991, Excess mass estimates and tests for multimodality, J. Am. Stat. Assoc., 86, 738
Hartigan, 1992, The runt test for multimodality, J. Classif., 9, 63, 10.1007/BF02618468
Rozál, 1994, The map test for multimodality, J. Classif., 11, 5, 10.1007/BF01201021
Maurus, 2016, Skinny-dip: clustering in a sea of noise, 1055
Schelling, 2018, Diptransformation: enhancing the structure of a dataset and thereby improving clustering, 407
Schelling, 2020, Dataset-transformation: improving clustering by enhancing the structure with dipscaling and diptransformation, Knowl. Inf. Syst., 62, 457, 10.1007/s10115-019-01388-5
Krause, 2005, Multimodal Projection Pursuit Using the Dip Statistic
Robertson, 1988
McLachlan, 2000
Craigmile, 1997, Parameter estimation for finite mixtures of uniform distributions, Commun. Stat.-Theory Methods, 26, 1981, 10.1080/03610929708832026
Bouguila, 2020
Chen, 2005, Seeking multi-thresholds directly from support vectors for image segmentation, Neurocomputing, 67, 335, 10.1016/j.neucom.2004.12.006
Dua, 2017
Fox, 2019
Kaggle, (https://www.kaggle.com).
Chamalis, 2018, The projected dip-means clustering algorithm, 1
Sammut, 2011
Hastie, 2009
Jolliffe, 2002
Bishop, 2006
Roux, 2018, A comparative study of divisive and agglomerative hierarchical clustering algorithms, J. Classif., 35, 345, 10.1007/s00357-018-9259-9
Boley, 1998, Principal direction divisive partitioning, Data Min. Knowl. Discov., 2, 325, 10.1023/A:1009740529316
Hamerly, 2003, Learning the k in k-means, 281
Rosin, 2001, Unimodal thresholding, Pattern Recognit., 34, 2083, 10.1016/S0031-3203(00)00136-9
Coudray, 2010, Robust threshold estimation for images with unimodal histograms, Pattern Recognit. Lett., 31, 1010, 10.1016/j.patrec.2009.12.025
Ng, 2006, Automatic thresholding for defect detection, Pattern Recognit. Lett., 27, 1644, 10.1016/j.patrec.2006.03.009