The Twelve Principles of Circular Hydrometallurgy
Tóm tắt
In this academic position paper, we propose the 12 Principles of a novel and more sustainable approach to hydrometallurgy that we call “circular hydrometallurgy.” The paper intends to set a basis for identifying future areas of research in the field of hydrometallurgy, while providing a “sustainability” benchmark for assessing existing processes and technological developments. Circular hydrometallurgy refers to the designing of energy-efficient and resource-efficient flowsheets or unit processes that consume the minimum quantities of reagents and result in minimum waste. The application of a circular approach involves new ways of thinking about how hydrometallurgy is applied for both primary and secondary resources. In either case, the emphasis must be on the regeneration and reuse of every reagent in the process. This refers not only to the acids and bases employed for leaching or pH control, but also any reducing agents, oxidizing agents, and other auxiliary reagents. Likewise, the consumption of water and energy must be reduced to an absolute minimum. To consolidate the concept of circular hydrometallurgical flowsheets, we present the 12 Principles that will boost sustainability: (1) regenerate reagents, (2) close water loops, (3) prevent waste, (4) maximize mass, energy, space, and time efficiency, (5) integrate materials and energy flows, (6) safely dispose of potentially harmful elements, (7) decrease activation energy, (8) electrify processes wherever possible, (9) use benign chemicals, (10) reduce chemical diversity, (11) implement real-time analysis and digital process control, and (12) combine circular hydrometallurgy with zero-waste mining. Although we realize that the choice of these principles is somewhat arbitrary and that other principles could be imagined or some principles could be merged, we are nevertheless convinced that the present framework of these 12 Principles, as put forward in this position paper, provides a powerful tool to show the direction of future research and innovation in hydrometallurgy, both in industry and in academia.
Tài liệu tham khảo
Free ML (2013) Hydrometallurgy: fundamentals and applications. Wiley, New York
Gupta GK, Mukherjee TK (2019) Hydrometallurgy in extraction processes. CRC Press, Boca Raton
Schorcht F, Kourti I, Scalet BM et al (2013) Best available techniques (BAT) reference document for the production of cement, lime and magnesium oxide. Industrial Emissions Directive 2010/75/EU (integrated pollution prevention and control). JRC Reference Reports JRC. https://doi.org/10.2788/12850
Adham K, Harris C (2014) HCl acid regeneration for chloride based hydrometallurgical processes with minimum environmental impact. In: Proceedings of the 7th International Symposium on Hydrometallurgy 2014 (Hydro 2014), June 22–25, 2014, Victoria, British Columbia, Canada. Canadian Institute of Mining, Metallurgy and Petroleum, pp 607–618
Baerhold F, Mitterecker S (2016) Acid recovery in the steel and metallurgical industry process characteristics and fuel saving options. In: IMPC 2016: XXVIII International Mineral Processing Congress Proceedings (11–15 September 2016, Quebec City, Canada). Canadian Institute of Mining Metallurgy and Petroleum (CIM), pp 789–803
Apelian D, Blanpain B, Kitamura S, Pontikes Y (2015) Editorial. J Sustain Metall 1:1–3. https://doi.org/10.1007/s40831-015-0010-z
Anastas PT, Warner JC (1998) Principles of green chemistry. Oxford University Press, Oxford
Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312. https://doi.org/10.1039/B918763B
Anastas PT, Zimmerman JB (2003) Design through the 12 principles of green engineering. Environ Sci Technol 37:94A-101A. https://doi.org/10.1021/es032373g
Abraham MA, Nguyen N (2003) “Green Engineering: Defining the Principles”— result from the Sandestin Conference. Environ Prog 22:233–236. https://doi.org/10.1002/ep.670220410
Ghisellini P, Cialani C, Ulgiati S (2016) A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J Clean Prod 114:11–32. https://doi.org/10.1016/j.jclepro.2015.09.007
Kirchherr J, Reike D, Hekkert M (2017) Conceptualizing the circular economy: an analysis of 114 definitions. Resour Conserv Recycl 127:221–232. https://doi.org/10.1016/j.resconrec.2017.09.005
United Nations (2015) The UN Sustainable Development Goals. Goal 12: Ensure sustainable consumption and production patterns. United Nations, New York
Spooren J, Binnemans K, Björkmalm J et al (2020) Near-zero-waste processing of low-grade, complex primary ores and secondary raw materials in Europe: technology development trends. Resour Conserv Recycl 160:104919. https://doi.org/10.1016/j.resconrec.2020.104919
Salminen J, Olaussen S (2018) Overcoming challenges in the circular economy: a thermodynamic reality-check. Policy Brief EU H2020 ETN SOCRATES. https://etn-socrates.eu/socrates-policy-view-thermodynamic-reality-check/
Bourget C, Soderstrom M, Jakovljevic B, Morrison J (2011) Optimization of the design parameters of a CYANEX 272 circuit for recovery of nickel and cobalt. Solvent Extr Ion Exch 29:823–836. https://doi.org/10.1080/07366299.2011.595640
Caron HM (1928) Over Ijzer en Nikkel in Nederlands Indië. Rede uitgesproken bij de aanvaarding van het ambt van Hoogleraar in de Mijnbouwkunde aan de Technische Hoogeschool te Delft, op Woensdag 2 Mei 1928. Technische Boekhandel en Drukkerij J. Waltman Jr., Delft (The Netherlands)
Gernon M, Wu M, Buszta T, Janney P (1999) Environmental benefits of methanesulfonic acid: comparative properties and advantages. Green Chem 1:127–140. https://doi.org/10.1039/a900157c
Palden T, Onghena B, Regadio M, Binnemans K (2019) Methanesulfonic acid: a sustainable acidic solvent for recovering metals from the jarosite residue of the zinc industry. Green Chem 21:5394–5404. https://doi.org/10.1039/c9gc02238d
Agrawal A, Kumar V, Pandey B, Sahu K (2006) A comprehensive review on the hydro metallurgical process for the production of nickel and copper powders by hydrogen reduction. Mater Res Bull 41:879–892. https://doi.org/10.1016/j.materresbull.2005.09.028
Schmachtel S, Toiminen M, Kontturi K et al (2009) New oxygen evolution anodes for metal electrowinning: MnO2 composite electrodes. J Appl Electrochem 39:1835. https://doi.org/10.1007/s10800-009-9887-1
Flynn CM (1990) Dense hydrolysis products from iron (III) nitrate and sulfate solutions. Hydrometallurgy 25:257–270. https://doi.org/10.1016/0304-386X(90)90042-Z
Sanna A, Uibu M, Caramanna G et al (2014) A review of mineral carbonation technologies to sequester CO2. Chem Soc Rev 43:8049–8080. https://doi.org/10.1039/C4CS00035H
Gao W, Fang Q, Yan H et al (2021) Recovery of acid and base from sodium sulfate containing lithium carbonate using bipolar membrane electrodialysis. Membranes 11:152. https://doi.org/10.3390/membranes11020152
Gurreri L, Tamburini A, Cipollina A, Micale G (2020) Electrodialysis applications in wastewater treatment for environmental protection and resources recovery: a systematic review on progress and perspectives. Membranes 10:146. https://doi.org/10.3390/membranes10070146
Lopez J, Gibert O, Cortina J (2021) Integration of membrane technologies to enhance the sustainability in the treatment of metal-containing acidic liquid wastes. An overview. Sep Purif Technol 265:118485. https://doi.org/10.1016/j.seppur.2021.118485
McKinley C, Ghahreman A (2018) Hydrochloric acid regeneration in hydrometallurgical processes: a review. Miner Process Extract Metall 127:157–168. https://doi.org/10.1080/03719553.2017.1330839
Van Weert G, Peek E (1992) Reagent recovery in chloride hydrometallurgy - some missing links. Hydrometallurgy 29:513–526. https://doi.org/10.1016/0304-386X(92)90030-4
Liao L, van Sandwijk A, van Weert G, de Wit JHW (1995) Ion transport in a two membrane electrowinning cell for the production of hydrochloric acid. J Appl Electrochem 25:1009–1016. https://doi.org/10.1007/BF00241949
Dresp S, Dionigi F, Klingenhof M, Strasser P (2019) Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Lett 4:933–942. https://doi.org/10.1021/acsenergylett.9b00220
Bennett JE (1980) Electrodes for generation of hydrogen and oxygen from seawater. Int J Hydrogen Energy 5:401–408. https://doi.org/10.1016/0360-3199(80)90021-X
Herrero-Gonzalez M, Diaz-Guridi P, Dominguez-Ramos A et al (2020) Highly concentrated HCl and NaOH from brines using electrodialysis with bipolar membranes. Sep Purif Technol 242:116785. https://doi.org/10.1016/j.seppur.2020.116785
Dry M, Harris B (2012) Nickel laterite and the three mineral acids. In: Proceedings of ALTA nickel and cobalt conference Perth, Australia. pp 20–35
Ma B, Wang C, Yang W et al (2013) Selective pressure leaching of Fe (II)-rich limonitic laterite ores from Indonesia using nitric acid. Miner Eng 45:151–158. https://doi.org/10.1016/j.mineng.2013.02.009
Ma B, Yang W, Yang B et al (2015) Pilot-scale plant study on the innovative nitric acid pressure leaching technology for laterite ores. Hydrometallurgy 155:88–94. https://doi.org/10.1016/j.hydromet.2015.04.016
Ma B, Xing P, Wang C et al (2018) A novel way to synthesize calcium sulfate whiskers with high aspect ratios from concentrated calcium nitrate solution. Mater Lett 219:1–3. https://doi.org/10.1016/j.matlet.2018.02.025
Shao S, Ma B, Chen Y et al (2020) Direct synthesis of single-phase α-CaSO4·0.5H2O whiskers from waste nitrate solution. Chin J Chem Eng 28:1752–1754. https://doi.org/10.1016/j.cjche.2020.04.005
Shao S, Ma B, Wang X et al (2020) Nitric acid pressure leaching of limonitic laterite ores: regeneration of HNO3 and simultaneous synthesis of fibrous CaSO4·2H2O by-products. J Cent South Univ 27:3249–3258. https://doi.org/10.1007/s11771-020-4463-2
Van Weert G, Shang Y (1993) Iron control in nitrate hydrometallurgy by (auto) decomposition of iron(II) nitrate. Hydrometallurgy 33:255–271. https://doi.org/10.1016/0304-386X(93)90066-M
Shang Y, Van Weert G (1993) Iron control in nitrate hydrometallurgy by autoclave hydrolysis of iron(III) nitrate. Hydrometallurgy 33:273–290. https://doi.org/10.1016/0304-386X(93)90067-N
Harvey TG (2006) The hydrometallurgical extraction of zinc by ammonium carbonate: a review of the Schnabel process. Miner Process Extr Metall Rev 27:231–279. https://doi.org/10.1080/08827500600815271
Dutrizac JE, MacDonald RJC (1974) Ferric ion as a leaching medium. Miner Sci Eng 6:59–95
Monhemius AJ (1996) Hydometallurgy-the clean solution for metal production. In: Clean Technologies for the Mining Industry, Proc III Int Conf pp 113–124
Monhemius AJ (2014) A changing environment: reflections on 50 years of hydrometallurgy. Hydrometallurgy 2014:1–7
Schlesinger M, King M, Sole K, Davenport W (2011) Extractive metallurgy of copper. Elsevier, Amsterdam
Botha WH, Fox MH, Lathwood AJ, et al (2007) Water balances in hydrometallurgical refineries. In: Proceedings of the Fourth Southern African Conference on Base Metals, Swakopmund, Namibia, 23–25 July 2007
Kinnunen P, Obenaus-Emler R, Raatikainen J et al (2021) Review of closed water loops with ore sorting and tailings valorisation for a more sustainable mining industry. J Clean Prod 278:123237. https://doi.org/10.1016/j.jclepro.2020.123237
Slatter KA, Plint ND, Cole M, et al (2009) Water management in Anglo Platinum process operations: effects of water quality on process operations. In: International Mine Water Conference, Pretoria, South Africa. pp 19–23
Bhikha H, Lewis AE, Deglon DA (2011) Reducing water consumption at Skorpion zinc. J South Afr Inst Min Metall 111:437–442
Lapidus GT (2018) Minimizing the hydro in hydrometallurgy. In: Davis BR, Moats MS, Wang S et al (eds) Extraction 2018. Springer, Cham, pp 1193–1201
Gunson A, Klein B, Veiga M, Dunbar S (2012) Reducing mine water requirements. J Clean Prod 21:71–82. https://doi.org/10.1016/j.jclepro.2011.08.020
Li Y, Xie S, Zhao Y et al (2019) The life cycle of water used in flotation: a review. Mining Metall Explor 36:385–397. https://doi.org/10.1007/s42461-018-0004-z
Emmett RC, Dahlstrom DA (1959) Liquid-solid separation factors in hydrometallurgical leach circuit design. Can J Chem Eng 37:3–8. https://doi.org/10.1002/cjce.5450370102
Chaedir B, Kurnia J, Sasmito A, Mujumdar A (2021) Advances in dewatering and drying in mineral processing. Dry Technol 39:1667–1684. https://doi.org/10.1080/07373937.2021.1907754
Wu Z, Hu Y, Lee D et al (2010) Dewatering and drying in mineral processing industry: potential for innovation. Dry Technol 28:834–842. https://doi.org/10.1080/07373937.2010.490485
Rezaei A, Abdollahi H, Gharabaghi M, Mohammadzadeh A (2020) Effects of flocculant, surfactant, coagulant, and filter aid on efficiency of filtration processing of copper concentrate: mechanism and optimization. J Min Environ 11:119–141. https://doi.org/10.22044/jme.2019.8692.1753
Joseph-Soly S, Nosrati A, Addai-Mensah J (2016) Improved dewatering of nickel laterite ore slurries using superabsorbent polymers. Adv Powder Technol 27:2308–2316. https://doi.org/10.1016/j.apt.2016.07.010
Mahmoud A, Olivier J, Vaxelaire J, Hoadley A (2010) Electrical field: a historical review of its application and contributions in wastewater sludge dewatering. Water Res 44:2381–2407. https://doi.org/10.1016/j.watres.2010.01.033
Radoiu M (2020) Microwave drying process scale-up. Chem Eng Process 155:108088. https://doi.org/10.1016/j.cep.2020.108088
Kentish S, Stevens G (2001) Innovations in separations technology for the recycling and re-use of liquid waste streams. Chem Eng J 84:149–159. https://doi.org/10.1016/S1385-8947(01)00199-1
Crini G, Lichtfouse E, Wilson L, Morin-Crini N (2019) Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett 17:195–213. https://doi.org/10.1007/s10311-018-0786-8
Cheng J, Yang H, Fan C et al (2020) Review on the applications and development of fluidized bed electrodes. J Solid State Electrochem 24:2199–2217. https://doi.org/10.1007/s10008-020-04786-w
Chaudhary AJ, Grimes SM (1993) Heavy metals in the environment. Part I: removal of cobalt from dilute effluent streams by fluidised bed electrolysis. J Chem Technol Biotechnol 56:15–20. https://doi.org/10.1002/jctb.280560104
Weijma J, Klok J, Dijkman H, et al (2022) Established technologies for metal recovery from industrial wastewater streams. In: Resource Recovery from Water: Principles and Application (Edited by: Ilje Pikaar, Jeremy Guest, Ramon Ganigué, Paul Jensen, Korneel Rabaey, Thomas Seviour, John Trimmer, Olaf van der Kolk, Céline Vaneeckhaute, Willy Verstraete). IWA Publishing, pp 295–317
Habashi F (2012) Pollution problems in the metallurgical industry: a review. J Min Environ 2:17–26
Mayes WM, Burke IT, Gomes HI et al (2016) Advances in understanding environmental risks of red mud after the Ajka Spill, Hungary. J Sustain Metall 2:332–343. https://doi.org/10.1007/s40831-016-0050-z
Kinnunen P, Karhu M, Yli-Rantala E et al (2022) A review of circular economy strategies for mine tailings. Clean Eng Technol 8:100499. https://doi.org/10.1016/j.clet.2022.100499
Jansen ML, Milligan DA (1975) Developments in sulfur disposal techniques in hydrometallurgy. JOM 27:13–23. https://doi.org/10.1007/BF03355883
Chung W, Griebel J, Kim E et al (2013) The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat Chem 5:518–524. https://doi.org/10.1038/NCHEM.1624
Wagenfeld J, Al-Ali K, Almheiri S et al (2019) Sustainable applications utilizing sulfur, a by-product from oil and gas industry: a state-of-the-art review. Waste Manag 95:78–89. https://doi.org/10.1016/j.wasman.2019.06.002
Eow J (2002) Recovery of sulfur from sour acid gas: a review of the technology. Environ Prog 21:143–162. https://doi.org/10.1002/ep.670210312
Pieplu A, Saur O, Lavalley J et al (1998) Claus catalysis and H2S selective oxidation. Catal Rev Sci Eng 40:409–450. https://doi.org/10.1080/01614949808007113
Salminen JP, Kobylin P (2006) Carbon dioxide-metal carbonate systems in chemical processes and environmental applications. ECS Trans 1:27–35. https://doi.org/10.1149/1.2214632
Zhou Z, Liang F, Qin W, Fei W (2014) Coupled reaction and solvent extraction process to form Li2CO3: mechanism and product characterization. AIChE J 60:282–288. https://doi.org/10.1002/aic.14243
Dai C, Chen H, Song X, Yu J (2020) Coupled reaction and solvent extraction process to utilize distiller waste using N235-isoamylol system. Energ Source Part A. https://doi.org/10.1080/15567036.2020.1781299
Van Gerven T, Stankiewicz A (2009) Structure, energy, synergy, time—the fundamentals of process intensification. Ind Eng Chem Res 48:2465–2474. https://doi.org/10.1021/ie801501y
Demopoulos G, Distin P (1985) Pressure hydrogen stripping in solvent-extraction. J Met 37:46–52. https://doi.org/10.1007/BF03259696
BASF (2022) Verbund. https://www.basf.com/global/en/investors/basf-at-a-glance/verbund.html. Accessed 8 Mar 2022
Hagelüken C (2006) Recycling of electronic scrap at Umicore precious metals refining. Acta Metall Slovaca 12:111–120
C. Hageluken (2006) Improving metal returns and eco-efficiency in electronics recycling - a holistic approach for interface optimisation between pre-processing and integrated metals smelting and refining. In: Proceedings of the 2006 IEEE International Symposium on Electronics and the Environment, 2006. pp 218–223
Reijnders L (2022) Is near-zero waste production of copper and its geochemically scarce companion elements feasible? Miner Process Extr Metall 43:1021–1048. https://doi.org/10.1080/08827508.2021.1986706
Murata K, Rose H, Carron M (1953) Systematic variation of rare earths in monazite. Geochim Cosmochim Acta 4:292–300. https://doi.org/10.1016/0016-7037(53)90058-1
Binnemans K, Jones PT, Blanpain B et al (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22. https://doi.org/10.1016/j.jclepro.2012.12.037
Swash PM, Monhemius AJ (1998) The scorodite process: a technology for the disposal of arsenic in the 21st century. In: Castro SH, Vergara F, Sanchez MA (eds) Effluent treatment in the mining industry. University of Concepción, Chile, pp 119–161
Nazari AM, Radzinski R, Ghahreman A (2017) Review of arsenic metallurgy: treatment of arsenical minerals and the immobilization of arsenic. Hydrometallurgy 174:258–281. https://doi.org/10.1016/j.hydromet.2016.10.011
Álvarez-Ayuso E (2022) Stabilization and encapsulation of arsenic-/antimony-bearing mine waste: overview and outlook of existing techniques. Crit Rev Environ Sci Technol 52:3720–3752. https://doi.org/10.1080/10643389.2021.1944588
Mohan D, Pittman C (2007) Arsenic removal from water/wastewater using adsorbents - a critical review. J Hazard Mater 142:1–53. https://doi.org/10.1016/j.jhazmat.2007.01.006
Habashi F, Ismail MI (1975) Health hazards and pollution in metallurgical industry due to phosphine and arsine. CIM Bull 68:99–103
Fowler BA, Weissberg JB (1974) Arsine poisoning. N Engl J Med 291:1171–1174. https://doi.org/10.1056/NEJM197411282912207
Canterford JH (1985) Hydrometallurgy: winning metals with water. Chem Eng 92:41–48
Price D, Warren G (1986) The influence of silver ion on the electrochemical response of chalcopyrite and other mineral sulfide electrodes in sulfuric acid. Hydrometallurgy 15:303–324. https://doi.org/10.1016/0304-386X(86)90063-0
Hiroyoshi N, Arai M, Miki H et al (2002) A new reaction model for the catalytic effect of silver ions on chalcopyrite leaching in sulfuric acid solutions. Hydrometallurgy 63:257–267. https://doi.org/10.1016/S0304-386X(01)00228-6
Ghahremaninezhad A, Radzinski R, Gheorghiu T et al (2015) A model for silver ion catalysis of chalcopyrite (CuFeS2) dissolution. Hydrometallurgy 155:95–104. https://doi.org/10.1016/j.hydromet.2015.04.011
Xie Y, Xie S, Li Y et al (2017) Dynamic modeling and optimal control of goethite process based on the rate-controlling step. Control Eng Pract 58:54–65. https://doi.org/10.1016/j.conengprac.2016.10.001
Szymanowski J, Cote G (1994) Catalytic effects in solvent-extraction. J Radioanal Nucl Chem 183:49–58. https://doi.org/10.1007/BF02043115
Binnemans K (2006) Chapter 229 Applications of tetravalent cerium compounds, Volume 36. In: Gschneidner KA, Bünzli J-CG, Pecharsky VK (eds) Handbook on the physics and chemistry of rare earths. Elsevier, pp 281–392.
Baláž P (2003) Mechanical activation in hydrometallurgy. Int J Miner Process 72:341–354. https://doi.org/10.1016/S0301-7516(03)00109-1
Baláž P, Achimovičová M (2006) Mechano-chemical leaching in hydrometallurgy of complex sulphides. Hydrometallurgy 84:60–68. https://doi.org/10.1016/j.hydromet.2006.04.006
Anderson GS, Bandarian PA (2019) Improving IsaMill™ energy efficiency through shaft spacer design. Miner Eng 132:211–219. https://doi.org/10.1016/j.mineng.2018.12.018
Bond FC (1961) Crushing and grinding calculations, part I. Br Chem Eng 6:378–385
Bond FC (1961) Crushing and grinding calculations, part II. Br Chem Eng 6:543–548
Chen J, Lei Y, Zhu C et al (2022) Morphology and distribution of cemented product formed via cementation over Zn in zinc sulfate solution relevant to roast-leach-electrowin process. Hydrometallurgy 210:105847. https://doi.org/10.1016/j.hydromet.2022.105847
Ferreira BK (2008) Three-dimensional electrodes for the removal of metals from dilute solutions: a review. Miner Process Extr Metall Rev 29:330–371. https://doi.org/10.1080/08827500802045586
Walsh FC, Ponce de León C (2018) Progress in electrochemical flow reactors for laboratory and pilot scale processing. Electrochim Acta 280:121–148. https://doi.org/10.1016/j.electacta.2018.05.027
Backhurst JR, Coulson JM, Goodridge F et al (1969) A preliminary investigation of fluidized bed electrodes. J Electrochem Soc 116:1600. https://doi.org/10.1149/1.2411628
Flett DS (1972) The fluidised-bed electrode in extractive metallurgy. Chem Ind 1:983–988
Coeuret F (1980) The fluidized bed electrode for the continuous recovery of metals. J Appl Electrochem 10:687–696. https://doi.org/10.1007/BF00611271
Tonini GA, Ruotolo LAM (2017) Heavy metal removal from simulated wastewater using electrochemical technology: optimization of copper electrodeposition in a membraneless fluidized bed electrode. Clean Technol Environ Policy 19:403–415. https://doi.org/10.1007/s10098-016-1226-8
Habashi F (1966) Recovery of elemental sulfur from sulfide ores. In: Proceedings of the 36th International Congress of Industrial Chemistry. Brussels (Belgium), 10–21 September 1966. pp 1–9
Kim M, Park S, Lee J, Choubey PK (2016) A novel zero emission concept for electrogenerated chlorine leaching and its application to extraction of platinum group metals from spent automotive catalyst. Hydrometallurgy 159:19–27. https://doi.org/10.1016/j.hydromet.2015.10.030
Perry SC, Pangotra D, Vieira L et al (2019) Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nature Rev Chem 3:442–458. https://doi.org/10.1038/s41570-019-0110-6
Dermont G, Bergeron M, Mercier G, Richer-Laflèche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152:1–31. https://doi.org/10.1016/j.jhazmat.2007.10.043
Kempisty DM, Racz L (2021) Forever chemicals: environmental, economic, and social equity concerns with PFAS in the environment. CRC
Oviedo C, Rodriguez J (2003) EDTA: the chelating agent under environmental scrutiny. Quim Nova 26:901–905. https://doi.org/10.1590/S0100-40422003000600020
Nockemann P, Thijs B, Pittois S et al (2006) Task-specific ionic liquid for solubilizing metal oxides. J Phys Chem B 110:20978–20992. https://doi.org/10.1021/jp0642995
Davris P, Balomenos E, Panias D, Paspaliaris I (2016) Selective leaching of rare earth elements from bauxite residue (red mud), using a functionalized hydrophobic ionic liquid. Hydrometallurgy 164:125–135. https://doi.org/10.1016/j.hydromet.2016.06.012
Prat D, Hayler J, Wells A (2014) A survey of solvent selection guides. Green Chem 16:4546–4551. https://doi.org/10.1039/C4GC01149J
Binnemans K, Jones PT (2017) Solvometallurgy: an emerging branch of extractive metallurgy. J Sustain Metall 3:570–600. https://doi.org/10.1007/s40831-017-0128-2
Nicol M (2020) The role and use of hydrogen peroxide as an oxidant in the leaching of minerals. I. Acid solutions. Hydrometallurgy 193:105328. https://doi.org/10.1016/j.hydromet.2020.105328
Nicol MJ (2020) The role and use of hydrogen peroxide as an oxidant in the leaching of minerals. II. Alkaline solutions. Hydrometallurgy 194:105365. https://doi.org/10.1016/j.hydromet.2020.105365
Venter R, Boylett M (2009) The evaluation of various oxidants used in acid leaching of uranium. In: Hydrometallurgy Conference. The Southern African Institute of Mining and Metallurgy, pp 1–12
Pedroza F, Aguilar M, Trevino T et al (2012) Treatment of sulfide minerals by oxidative leaching with ozone. Miner Process Extr Metall Rev 33:269–279. https://doi.org/10.1080/08827508.2011.584093
Carrillo-Pedroza F, Sanchez-Castillo M, Soria-Aguilar M et al (2010) Evaluation of acid leaching of low grade chalcopyrite using ozone by statistical analysis. Can Metall Q 49:219–226. https://doi.org/10.1179/cmq.2010.49.3.219
Rodriguez-Rodriguez C, Nava-Alonso F, Uribe-Salas A (2018) Pyrite oxidation with ozone: stoichiometry and kinetics. Can Metall Q 57:294–303. https://doi.org/10.1080/00084433.2018.1460437
Zhang R, Wang H, Hu E et al (2022) Oxidation of pyrite using ozone micro-nano bubbles. Mining Metall Explor 39:709–719. https://doi.org/10.1007/s42461-021-00528-2
Pedroza F, Aguilar M, Luevanos A, Anaya J (2007) Ozonation pretreatment of gold-silver pyritic minerals. Ozone Sci Eng 29:307–313. https://doi.org/10.1080/01919510701463131
Gonzalez-Anaya J, Nava-Alonso F, Pecina-Trevino E (2011) Use of ozone for gold extraction from a highly refractory concentrate. Ozone Sci Eng 33:42–49. https://doi.org/10.1080/01919512.2011.536507
Saarinen T, Lindfors L-E, Fugleberg S (1998) A review of the precipitation of nickel from salt solutions by hydrogen reduction. Hydrometallurgy 47:309–324. https://doi.org/10.1016/S0304-386X(97)00055-8
Sole KC, Hiskey JB (1995) Solvent extraction of copper by Cyanex 272, Cyanex 302 and Cyanex 301. Hydrometallurgy 37:129–147. https://doi.org/10.1016/0304-386X(94)00023-V
Sole KC (2018) The evolution of cobalt–nickel separation and purification technologies: fifty years of solvent extraction and ion exchange. In: Extraction 2018. Springer, pp 1167–1191
Lahl U, Hawxwell KA (2006) REACH—The New European Chemicals Law. Environ Sci Technol 40:7115–7121. https://doi.org/10.1021/es062984j
European Commission (2022) REACH. https://ec.europa.eu/environment/chemicals/reach/reach_en.htm
Flett D (1999) New reagents or new ways with old reagents. J Chem Technol Biotechnol 74:99–105
Davidson RA, Walker EB, Barrow CR, Davidson CF (1994) On-line radioisotope XRF analysis of copper, arsenic, and sulfur in copper electrolyte purification solutions. Appl Spectrosc 48:796–800
Volkov AI, Alov NV (2010) Method for improving the accuracy of continuous X-ray fluorescence analysis of iron ore mixtures. J Anal Chem 65:732–738. https://doi.org/10.1134/S1061934810070129
Kondratjevs V, Landmans K, Sokolovs A, Gostilo V (2020) Performance improvement of on-line XRF analysis of minerals on a conveyor belt. J Mining Sci 56:1061–1066. https://doi.org/10.1134/S1062739120060198
Li H, Xu Z, Wang W et al (2019) A novel technique for online slurry grade detection based on EDXRF. Miner Eng 131:14–22. https://doi.org/10.1016/j.mineng.2018.11.004
Nelson GL, Lackey HE, Bello JM et al (2021) Enabling microscale processing: combined Raman and absorbance spectroscopy for microfluidic on-line monitoring. Anal Chem 93:1643–1651. https://doi.org/10.1021/acs.analchem.0c04225
McCoy JT, Auret L (2019) Machine learning applications in minerals processing: a review. Miner Eng 132:95–109. https://doi.org/10.1016/j.mineng.2018.12.004
Flores V, Keith B, Leiva C (2020) Using artificial intelligence techniques to improve the prediction of copper recovery by leaching. J Sens 2020:2454875. https://doi.org/10.1155/2020/2454875
Giles AE, Aldrich C (1996) Modelling of rare earth solvent extraction with artificial neural nets. Hydrometallurgy 43:241–255. https://doi.org/10.1016/0304-386X(95)00098-2
Anitha M, Singh H (2008) Artificial neural network simulation of rare earths solvent extraction equilibrium data. Desalination 232:59–70. https://doi.org/10.1016/j.desal.2007.10.037
Shi X, Li Y, Sun B et al (2020) Optimizing zinc electrowinning processes with current switching via Deep Deterministic Policy Gradient learning. Neurocomputing 380:190–200. https://doi.org/10.1016/j.neucom.2019.11.022
Wu J, Cheng Y, Liu C et al (2020) A BP neural network based on GA for optimizing energy consumption of copper electrowinning. Math Probl Eng 2020:1026128. https://doi.org/10.1155/2020/1026128
Rintala L, Lillkung K, Aromaa J (2011) The use of decision and optimization methods in selection of hydrometallurgical unit process alternatives. Physicochem Probl Miner Process 46:229–242
Rintala L (2015) Development of a process selection method for gold ores using case-based reasoning. PhD thesis, Aalto University
Reuter MA (2016) Digitalizing the circular economy. Metall Mater Trans B 47:3194–3220. https://doi.org/10.1007/s11663-016-0735-5
van Schalkwyk RF, Reuter MA, Gutzmer J, Stelter M (2018) Challenges of digitalizing the circular economy: assessment of the state-of-the-art of metallurgical carrier metal platform for lead and its associated technology elements. J Clean Prod 186:585–601. https://doi.org/10.1016/j.jclepro.2018.03.111
Lakshmanan VI, Ojaghi A, Gorain B (2019) Emerging Trends in Mining. In: Lakshmanan VI, Gorain B (eds) Innovations and breakthroughs in the gold and silver industries: concepts, applications and future trends. Springer, Cham, pp 23–47
Goodland R (2012) Responsible mining: the key to profitable resource development. Sustainability 4:2099–2126. https://doi.org/10.3390/su4092099
Sánchez F, Hartlieb P (2020) Innovation in the Mining Industry: technological trends and a case study of the challenges of disruptive innovation. Mining Metall Explor 37:1385–1399. https://doi.org/10.1007/s42461-020-00262-1
Mudd GM (2001) Critical review of acid in situ leach uranium mining: 1. USA and Australia. Environ Geol 41:390–403. https://doi.org/10.1007/s002540100406
Mudd GM (2001) Critical review of acid in situ leach uranium mining: 2. Soviet Block and Asia. Environ Geol 41:404–416. https://doi.org/10.1007/s002540100405
Kuhar LL, Breuer P, Robinson DJ, McFarlane A (2015) Making hard rock in-situ recovery a reality. In: Proceedings of the Third International Future Mining Conference / Sydney, Nsw, 4–6 November 2015. Australasian Institute of Mining and Metallurgy (AusIMM), Sydney, Australia, pp 189–196
Li Y, Li W, Xiao Q et al (2018) Acid mine drainage remediation strategies: a review on migration and source controls. Miner Metall Process 35:148–158. https://doi.org/10.19150/mmp.8464
García V, Häyrynen P, Landaburu-Aguirre J et al (2014) Purification techniques for the recovery of valuable compounds from acid mine drainage and cyanide tailings: application of green engineering principles. J Chem Technol Biotechnol 89:803–813. https://doi.org/10.1002/jctb.4328
Kopacek B (2013) Mobile Hydrometallurgy to recover rare and precious metals from WEEE. IFAC Proceedings Volumes 46:5–9. https://doi.org/10.3182/20130606-3-XK-4037.00029
De Michelis I, Kopacek B (2018) 13 - HydroWEEE project: Design and construction of a mobile demonstration plant. https://doi.org/10.1016/B978-0-08-102057-9.00013-5. In: Vegliò F, Birloaga I (eds) Waste Electrical and Electronic Equipment Recycling. Woodhead Publishing, pp 357–383
Larsson K, Ekberg C, Ødegaard-Jensen A (2013) Dissolution and characterization of HEV NiMH batteries. Waste Manage 33:689–698. https://doi.org/10.1016/j.wasman.2012.06.001
Agrawal A, Sahu KK (2009) An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries. J Hazard Mater 171:61–75. https://doi.org/10.1016/j.jhazmat.2009.06.099
Kesieme U, Chrysanthou A, Catulli M, Cheng CY (2018) A review of acid recovery from acidic mining waste solutions using solvent extraction. J Chem Technol Biotechnol 93:3374–3385. https://doi.org/10.1002/jctb.5728
Norgate T, Jahanshahi S (2011) Assessing the energy and greenhouse gas footprints of nickel laterite processing. Miner Eng 24:698–707. https://doi.org/10.1016/j.mineng.2010.10.002
Sitorus F, Cilliers JJ, Brito-Parada PR (2019) Multi-criteria decision making for the choice problem in mining and mineral processing: applications and trends. Expert Syst Appl 121:393–417. https://doi.org/10.1016/j.eswa.2018.12.001