The Trendermarsch polder (North Frisia, Germany) - Geophysical and geoarchaeological investigations of an anthropogenic medieval coastal landscape and its vulnerability against natural hazards

Geomorphology - Tập 418 - Trang 108461 - 2022
Hanna Hadler1, Dennis Wilken2, Sarah Bäumler2, Peter Fischer1, Wolfgang Rabbel2, Timo Willershäuser1, Tina Wunderlich2, Andreas Vött1
1Johannes Gutenberg-Universität Mainz, Institute of Geography, 55099 Mainz, Germany
2Christian-Albrechts-Universität zu Kiel, Institute of Geosciences, 24118 Kiel, Germany

Tài liệu tham khảo

Athersuch, 1989, Marine and brackish water ostracods Bantelmann, 1967, Die Landschaftsentwicklung im nordfriesischen Küstengebiet. Eine Funktionschronik durch fünf Jahrtausende, Die Küste, 14, 5 Bantelmann, 1975 Bartholdy, 1997, The backbarrier sediments of the Skallingen Peninsula, Denmark. Geografisk Tidsskrift-danish, J. Geogr., 97, 11 Bartholdy, 2012, Salt marsh sedimentation, 151 Blott, 2001, GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments, Earth Surf. Process. Landf., 26, 1237, 10.1002/esp.261 Blume, 2011 Boden, 2005 Bungenstock, 2010, The high-resolution Holocene Sea-level curve for Northwest Germany: global signals, local effects or data-artefacts?, Int. J. Earth Sci., 99, 1687, 10.1007/s00531-009-0493-6 Chang, 2006, Late Holocene stratigraphic evolution of a back-barrier tidal basin in the East Frisian Wadden Sea, southern North Sea: transgressive deposition and its preservation potential, Facies, 52, 329, 10.1007/s10347-006-0080-2 <collab>UNESCO - United Nations Educational, 2009 Croudace, 2006, ITRAX: description and evaluation of a new multi-function X-ray core scanner, Geol. Soc. Lond. Spec. Publ., 267, 51, 10.1144/GSL.SP.2006.267.01.04 Dearing, 1996, Magnetic susceptibility of soil: an evaluation of conflicting theories using a national data set, Geophys. J. Int., 127, 728, 10.1111/j.1365-246X.1996.tb04051.x Dittmer, 1952, Die nacheiszeitliche Entwicklung der Schleswig-holsteinischen Westküste, Meyniana, 1, 138 Enters, 2021, A new ΔR value for the southern North Sea and its application in coastal research, Neth. J. Geosci., 100 Evans, 2003 Finkler, 2018, Tracing the Alkinoos Harbor of ancient Kerkyra, Greece, and reconstructing its paleotsunami history, Geoarchaeology, 33, 24, 10.1002/gea.21609 Fischer, 1936, Vol. 2 Fischer, 2016, Combined Electrical Resistivity Tomography (ERT), Direct-push Electrical Conductivity (DP-EC) logging and coring. A new methodological approach in geoarchaeological research, Archaeol. Prospect., 23, 213, 10.1002/arp.1542 Flemming, 1992, Bioclastic tidal-channel lag deposits: a genetic model, Senckenberg. Marit., 22, 109 Frenzel, 2010, An illustrated key and (palaeo) ecological primer for Postglacial to recent Ostracoda (Crustacea) of the Baltic Sea, Boreas, 39, 567, 10.1111/j.1502-3885.2009.00135.x Fruergaard, 2015, Stratigraphy, evolution, and controls of a Holocene transgressive–regressive barrier island under changing sea level: Danish North Sea coast, Journal of Sedimentary Research, 85, 820, 10.2110/jsr.2015.53 Geoprobe, 2015, Geoprobe Hydraulic Profiling Tool (HPT) System Günther, 2012, Boundless Electrical Resistivity Tomography (BERT) v. 2.0 open access software for advanced and flexible imaging Günther, 2006, Three-dimensional modelling and inversion of dc resistivity data incorporating topography – II. Inversion, Geophys. J. Int., 166, 506, 10.1111/j.1365-246X.2006.03011.x Hadler, 2018, Geoarchaeological evidence of marshland destruction in the area of Rungholt, present-day Wadden Sea around Hallig Südfall (North Frisia, Germany), by the Grote Mandränke in 1362 AD, Quat. Int., 473, 37, 10.1016/j.quaint.2017.09.013 Hadler, 2020, River channel evolution and tsunami impacts recorded in local sedimentary archives – the ‘Fiume Morto’ at Ostia Antica (Tiber River, Italy), Sedimentology, 67, 1309, 10.1111/sed.12599 Hadler, 2021, Automated facies identification by Direct Push-based sensing methods (CPT, HPT) and multivariate linear discriminant analysis to decipher geomorphological changes and storm surge impact on a medieval coastal landscape, Earth Surf. Process. Landf., 46, 3228, 10.1002/esp.5232 Heaton, 2020, Marine20 - the marine radiocarbon age calibration curve (0–55,000 cal BP), Radiocarbon, 62, 779, 10.1017/RDC.2020.68 Hoffmann, 1985, The Holocene marine transgression in the region of the North Frisian islands, E&G Quat. Sci. J., 35, 61, 10.3285/eg.35.1.10 Hoffmann, 1988, Das Küstenholozän im Einzugsbereich der Norderhever, Nordfriesland, 66, 51 Hoffmann, 1998, Das junge Küstenholozän an der Nordseeküste Schleswig-Holsteins, Meyniana, 50, 71 Hoffmann, 2004, Holocene landscape development in the marshes of the West Coast of Schleswig-Holstein, Germany, Quat. Int., 112, 29, 10.1016/S1040-6182(03)00063-6 Hoffmann, 1984, Landschafts- und Siedlungsgeschichte im Bereich der heutigen Marscheninseln und Watten Nordfriesland, Siedlungsforschung, 2, 165 Horton, 2006, 40, 1 Hutton, 1977, Titanium and zirconium minerals, 673 Kabata-Pendias, 2011 Karle, 2017, Holocene coastal lowland evolution: reconstruction of land-sea transitions in response to sea-level changes (Jade Bay, southern North Sea, Germany), Z. Dtsch. Ges. Geowiss., 168, 21 Karle, 2021, Holocene coastal landscape development in response to rising sea level in the Central Wadden Sea coastal region, Neth. J. Geosci., 100 Köbler, 2014 Köhn, 1929, Korngrößenanalyse vermittels Pipettanalyse, 53, 729 Kühn, 2007, Jenseits der Deiche. Archäologie im nordfriesischen Wattenmeer, 251 Kühn, 1989, Der frühe Deichbau in Nordfriesland Lehmann, 2000 2019 2014, DOP and DEM image tiles 32486_6034 to 6037, 32487_6034 to 6037, 32488_6034 to 6037, 32489_6034 to 6037 and 32490_6034 to 6037, captured in 2014, available upon request Menke, 1988, Die holozäne Nordseetransgression im Küstenbereich der südöstlichen Deutschen Bucht, 66, 117 Milkereit, 1989, Noise suppression and coherency enhancement of seismic data, 89, 9 Müller, 1958, Grundsätzliche Betrachtungen zur systematischen Gliederung der Marschböden, Geol. Jahrb., 76, 11 Müller-Navarra, 2016, Natural and anthropogenic influence on the distribution of salt marsh foraminifera in the bay of Tümlau, German North Sea, J. Foraminifer. Res., 46, 61, 10.2113/gsjfr.46.1.61 Müller-Navarra, 2017, Applicability of transfer functions for relative sea-level reconstructions in the southern North Sea coastal region based on salt-marsh foraminifera, Mar. Micropaleontol., 135, 15, 10.1016/j.marmicro.2017.06.003 Müller-Navarra, 2019, Evolution of a salt marsh in the southeastern North Sea region–anthropogenic and natural forcing, Estuar. Coast. Shelf Sci., 218, 268, 10.1016/j.ecss.2018.12.022 Murray, 1971 Murray, 2006 Murray, 2011, The distribution of agglutinated foraminifera in NW european seas: Baseline data for the interpretation of fossil assemblages, Palaeontol. Electron., 14, 1 Newig, 2004, Die Küstengestalt Nordfrieslands im Mittelalter nach historischen Quellen, 1, 23 Newig, 2014, Nordfrieslands Küste zwischen Landgewinn und Landverlust, Geogr. Rundsch., 66, 4 Obrocki, 2020, Tracing tsunami signatures of the ad 551 and ad 1303 tsunamis at the Gulf of Kyparissia (Peloponnese, Greece) using direct push in situ sensing techniques combined with geophysical studies, Sedimentology, 67, 1274, 10.1111/sed.12555 Panten, 2017, Vergleichende Untersuchungen zu Johannes Mejers Rungholtkarten und zur Rungholtsage, 52, 7 Petersen, 1977 Polderman, 1974, The Oribatida (acari) of saline areas in the western part of the Dutch Wadden Sea, Neth. J. Sea Res., 8, 49, 10.1016/0077-7579(74)90026-X Reimer, 2020, The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP), Radiocarbon, 62, 725, 10.1017/RDC.2020.41 Reineck, 1982 Reineck, 1980 Ricklefs, 2016, Die Geologie Rungholts, 12 2006 Rothwell, 2015, Twenty years of XRF core scanning marine sediments: what do geochemical proxies tell us?, 25 Sander, 2015, Sedimentary indications and absolute chronology of Holocene relative sea-level changes retrieved from coastal lagoon deposits on SamsøDenmark, Boreas, 44, 706, 10.1111/bor.12124 Schroeder, 1968, Zur Genese und Klassifizierung der Marschen, Mitteilgn. Dtsch. Bodenkundl. Gesellsch., 8, 243 Schrott, 2015, Gelände-Arbeitsmethoden in der Geomorphologie, 396 Schulmeister, 2003, Direct-push electrical conductivity logging for high-resolution hydrostratigraphic characterization, Ground Water Monit. Remediat., 23, 52, 10.1111/j.1745-6592.2003.tb00683.x Scott, 1993, A device for precision splitting of micropaleontological samples in liquid suspension, J. Paleontol., 67, 151, 10.1017/S0022336000021302 Scott, 2001 Sen Gupta, 1999 Streif, 1990, Quaternary sea-level changes in the north sea, an analysis of amplitudes and velocities Vos, 2000, The long-term evolution of intertidal mudflats in the northern Netherlands during the Holocene; natural and anthropogenic processes, Continental Shelf Research, 20, 157, 10.1016/S0278-4343(00)00043-1 Wilken, 2022, Lost in the North Sea—Geophysical and geoarchaeological prospection of the Rungholt medieval dyke system (North Frisia, Germany), PloS one, 17, 10.1371/journal.pone.0265463 Willmann, 1989 Wunderlich, 2013, Pedophysical models for resistivity and permittivity of partially water-saturated soils, Vadose Zone Journal, 12, 21, 10.2136/vzj2013.01.0023 Wunderlich, 2018, Constraining electric resistivity tomography by direct push electric conductivity logs and vibracores: an exemplary study of the Fiume Morto silted riverbed (Ostia Antica, western Italy), Geophysics, 83, 1, 10.1190/geo2016-0660.1