The Transmembrane Domain Peptide of Vesicular Stomatitis Virus Promotes Both Intermediate and Pore Formation during PEG-Mediated Vesicle Fusion
Tài liệu tham khảo
Bullough, 1994, Structure of influenza haemagglutinin at the pH of membrane fusion, Nature, 371, 37, 10.1038/371037a0
Yin, 2005, Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein, Proc. Natl. Acad. Sci. USA, 102, 9288, 10.1073/pnas.0503989102
Harrison, 2008, Viral membrane fusion, Nat. Struct. Mol. Biol., 15, 690, 10.1038/nsmb.1456
White, 2008, Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme, Crit. Rev. Biochem. Mol. Biol., 43, 189, 10.1080/10409230802058320
Burgess, 1992, Modulation of poly(ethylene glycol)-induced fusion by membrane hydration: importance of interbilayer separation, Biochemistry, 31, 2653, 10.1021/bi00125a004
Kemble, 1994, Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion, Cell, 76, 383, 10.1016/0092-8674(94)90344-1
Nüssler, 1997, Meta-stability of the hemifusion intermediate induced by glycosylphosphatidylinositol-anchored influenza hemagglutinin, Biophys. J., 73, 2280, 10.1016/S0006-3495(97)78260-2
Odell, 1997, Influence of membrane anchoring and cytoplasmic domains on the fusogenic activity of vesicular stomatitis virus glycoprotein G, J. Virol., 71, 7996, 10.1128/JVI.71.10.7996-8000.1997
Miyauchi, 2006, Mutations of conserved glycine residues within the membrane-spanning domain of human immunodeficiency virus type 1 gp41 can inhibit membrane fusion and incorporation of Env onto virions, Jpn. J. Infect. Dis., 59, 77
Owens, 1994, Mutations in the membrane-spanning domain of the human immunodeficiency virus envelope glycoprotein that affect fusion activity, J. Virol., 68, 570, 10.1128/JVI.68.1.570-574.1994
Shang, 2008, Role of the membrane-spanning domain of human immunodeficiency virus type 1 envelope glycoprotein in cell-cell fusion and virus infection, J. Virol., 82, 5417, 10.1128/JVI.02666-07
Cleverley, 1998, The transmembrane domain in viral fusion: essential role for a conserved glycine residue in vesicular stomatitis virus G protein, Proc. Natl. Acad. Sci. USA, 95, 3425, 10.1073/pnas.95.7.3425
Dennison, 2002, VSV transmembrane domain (TMD) peptide promotes PEG-mediated fusion of liposomes in a conformationally sensitive fashion, Biochemistry, 41, 14925, 10.1021/bi0203233
Melikyan, 2000, A point mutation in the transmembrane domain of the hemagglutinin of influenza virus stabilizes a hemifusion intermediate that can transit to fusion, Mol. Biol. Cell, 11, 3765, 10.1091/mbc.11.11.3765
Cohen, 2004, The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement, J. Membr. Biol., 199, 1, 10.1007/s00232-004-0669-8
Chernomordik, 2003, Protein-lipid interplay in fusion and fission of biological membranes, Annu. Rev. Biochem., 72, 175, 10.1146/annurev.biochem.72.121801.161504
Malinin, 2004, Energetics of vesicle fusion intermediates: comparison of calculations with observed effects of osmotic and curvature stresses, Biophys. J., 86, 2951, 10.1016/S0006-3495(04)74346-5
Chakraborty, 2014, pH alters PEG-mediated fusion of phosphatidylethanolamine-containing vesicles, Biophys. J., 10.1016/j.bpj.2014.07.048
Chakraborty, 2012, Activation thermodynamics of poly(ethylene glycol)-mediated model membrane fusion support mechanistic models of stalk and pore formation, Biophys. J., 102, 2751, 10.1016/j.bpj.2012.04.053
Le Blanc, 2005, Endosome-to-cytosol transport of viral nucleocapsids, Nat. Cell Biol., 7, 653, 10.1038/ncb1269
Roche, 2007, Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G, Science, 315, 843, 10.1126/science.1135710
Weinreb, 2007, Analysis of membrane fusion as a two-state sequential process: evaluation of the stalk model, Biophys. J., 92, 4012, 10.1529/biophysj.106.090043
Lee, 1997, Evolution of lipidic structures during model membrane fusion and the relation of this process to cell membrane fusion, Biochemistry, 36, 6251, 10.1021/bi970404c
Chen, 1956, Microdetermination of phosphate, Anal. Chem., 28, 1756, 10.1021/ac60119a033
Schwenk, 1952, Studies on the biosynthesis of cholesterol. III. Purification of C14-cholesterol from perfusions of livers and other organs, Arch. Biochem. Biophys., 40, 334, 10.1016/0003-9861(52)90119-7
Lentz, 1992, Bilayer curvature and certain amphipaths promote poly(ethylene glycol)-induced fusion of dipalmitoylphosphatidylcholine unilamellar vesicles, Biochemistry, 31, 2643, 10.1021/bi00125a003
Chakraborty, 2013, Wild-type and mutant hemagglutinin fusion peptides alter bilayer structure as well as kinetics and activation thermodynamics of stalk and pore formation differently: mechanistic implications, Biophys. J., 105, 2495, 10.1016/j.bpj.2013.10.010
Kyoung, 2011, In vitro system capable of differentiating fast Ca2+-triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release, Proc. Natl. Acad. Sci. USA, 108, E304, 10.1073/pnas.1107900108
Lee, 1997, Outer leaflet-packing defects promote poly(ethylene glycol)-mediated fusion of large unilamellar vesicles, Biochemistry, 36, 421, 10.1021/bi9622332
Ho, 1995, Hydration and order in lipid bilayers, Biochemistry, 34, 6188, 10.1021/bi00018a023
Tarafdar, 2012, Phosphatidylserine inhibits and calcium promotes model membrane fusion, Biophys. J., 103, 1880, 10.1016/j.bpj.2012.09.030
Haque, 2011, Hemagglutinin fusion peptide mutants in model membranes: structural properties, membrane physical properties, and PEG-mediated fusion, Biophys. J., 101, 1095, 10.1016/j.bpj.2011.07.031
Siegel, 1999, The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion, Biophys. J., 76, 291, 10.1016/S0006-3495(99)77197-3
Smirnova, 2010, Solvent-exposed tails as prestalk transition states for membrane fusion at low hydration, J. Am. Chem. Soc., 132, 6710, 10.1021/ja910050x
Kasson, 2010, Atomic-resolution simulations predict a transition state for vesicle fusion defined by contact of a few lipid tails, PLOS Comput. Biol., 6, e1000829, 10.1371/journal.pcbi.1000829
Kozlov, 1994, Bending, hydration and interstitial energies quantitatively account for the hexagonal-lamellar-hexagonal reentrant phase transition in dioleoylphosphatidylethanolamine, Biophys. J., 67, 1603, 10.1016/S0006-3495(94)80633-2