The Transmembrane Domain Peptide of Vesicular Stomatitis Virus Promotes Both Intermediate and Pore Formation during PEG-Mediated Vesicle Fusion

Biophysical Journal - Tập 107 - Trang 1318-1326 - 2014
Tanusree Sengupta1,2, Hirak Chakraborty1,2, Barry R. Lentz1,2
1Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina
2Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, North Carolina

Tài liệu tham khảo

Bullough, 1994, Structure of influenza haemagglutinin at the pH of membrane fusion, Nature, 371, 37, 10.1038/371037a0 Yin, 2005, Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein, Proc. Natl. Acad. Sci. USA, 102, 9288, 10.1073/pnas.0503989102 Harrison, 2008, Viral membrane fusion, Nat. Struct. Mol. Biol., 15, 690, 10.1038/nsmb.1456 White, 2008, Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme, Crit. Rev. Biochem. Mol. Biol., 43, 189, 10.1080/10409230802058320 Burgess, 1992, Modulation of poly(ethylene glycol)-induced fusion by membrane hydration: importance of interbilayer separation, Biochemistry, 31, 2653, 10.1021/bi00125a004 Kemble, 1994, Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion, Cell, 76, 383, 10.1016/0092-8674(94)90344-1 Nüssler, 1997, Meta-stability of the hemifusion intermediate induced by glycosylphosphatidylinositol-anchored influenza hemagglutinin, Biophys. J., 73, 2280, 10.1016/S0006-3495(97)78260-2 Odell, 1997, Influence of membrane anchoring and cytoplasmic domains on the fusogenic activity of vesicular stomatitis virus glycoprotein G, J. Virol., 71, 7996, 10.1128/JVI.71.10.7996-8000.1997 Miyauchi, 2006, Mutations of conserved glycine residues within the membrane-spanning domain of human immunodeficiency virus type 1 gp41 can inhibit membrane fusion and incorporation of Env onto virions, Jpn. J. Infect. Dis., 59, 77 Owens, 1994, Mutations in the membrane-spanning domain of the human immunodeficiency virus envelope glycoprotein that affect fusion activity, J. Virol., 68, 570, 10.1128/JVI.68.1.570-574.1994 Shang, 2008, Role of the membrane-spanning domain of human immunodeficiency virus type 1 envelope glycoprotein in cell-cell fusion and virus infection, J. Virol., 82, 5417, 10.1128/JVI.02666-07 Cleverley, 1998, The transmembrane domain in viral fusion: essential role for a conserved glycine residue in vesicular stomatitis virus G protein, Proc. Natl. Acad. Sci. USA, 95, 3425, 10.1073/pnas.95.7.3425 Dennison, 2002, VSV transmembrane domain (TMD) peptide promotes PEG-mediated fusion of liposomes in a conformationally sensitive fashion, Biochemistry, 41, 14925, 10.1021/bi0203233 Melikyan, 2000, A point mutation in the transmembrane domain of the hemagglutinin of influenza virus stabilizes a hemifusion intermediate that can transit to fusion, Mol. Biol. Cell, 11, 3765, 10.1091/mbc.11.11.3765 Cohen, 2004, The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement, J. Membr. Biol., 199, 1, 10.1007/s00232-004-0669-8 Chernomordik, 2003, Protein-lipid interplay in fusion and fission of biological membranes, Annu. Rev. Biochem., 72, 175, 10.1146/annurev.biochem.72.121801.161504 Malinin, 2004, Energetics of vesicle fusion intermediates: comparison of calculations with observed effects of osmotic and curvature stresses, Biophys. J., 86, 2951, 10.1016/S0006-3495(04)74346-5 Chakraborty, 2014, pH alters PEG-mediated fusion of phosphatidylethanolamine-containing vesicles, Biophys. J., 10.1016/j.bpj.2014.07.048 Chakraborty, 2012, Activation thermodynamics of poly(ethylene glycol)-mediated model membrane fusion support mechanistic models of stalk and pore formation, Biophys. J., 102, 2751, 10.1016/j.bpj.2012.04.053 Le Blanc, 2005, Endosome-to-cytosol transport of viral nucleocapsids, Nat. Cell Biol., 7, 653, 10.1038/ncb1269 Roche, 2007, Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G, Science, 315, 843, 10.1126/science.1135710 Weinreb, 2007, Analysis of membrane fusion as a two-state sequential process: evaluation of the stalk model, Biophys. J., 92, 4012, 10.1529/biophysj.106.090043 Lee, 1997, Evolution of lipidic structures during model membrane fusion and the relation of this process to cell membrane fusion, Biochemistry, 36, 6251, 10.1021/bi970404c Chen, 1956, Microdetermination of phosphate, Anal. Chem., 28, 1756, 10.1021/ac60119a033 Schwenk, 1952, Studies on the biosynthesis of cholesterol. III. Purification of C14-cholesterol from perfusions of livers and other organs, Arch. Biochem. Biophys., 40, 334, 10.1016/0003-9861(52)90119-7 Lentz, 1992, Bilayer curvature and certain amphipaths promote poly(ethylene glycol)-induced fusion of dipalmitoylphosphatidylcholine unilamellar vesicles, Biochemistry, 31, 2643, 10.1021/bi00125a003 Chakraborty, 2013, Wild-type and mutant hemagglutinin fusion peptides alter bilayer structure as well as kinetics and activation thermodynamics of stalk and pore formation differently: mechanistic implications, Biophys. J., 105, 2495, 10.1016/j.bpj.2013.10.010 Kyoung, 2011, In vitro system capable of differentiating fast Ca2+-triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release, Proc. Natl. Acad. Sci. USA, 108, E304, 10.1073/pnas.1107900108 Lee, 1997, Outer leaflet-packing defects promote poly(ethylene glycol)-mediated fusion of large unilamellar vesicles, Biochemistry, 36, 421, 10.1021/bi9622332 Ho, 1995, Hydration and order in lipid bilayers, Biochemistry, 34, 6188, 10.1021/bi00018a023 Tarafdar, 2012, Phosphatidylserine inhibits and calcium promotes model membrane fusion, Biophys. J., 103, 1880, 10.1016/j.bpj.2012.09.030 Haque, 2011, Hemagglutinin fusion peptide mutants in model membranes: structural properties, membrane physical properties, and PEG-mediated fusion, Biophys. J., 101, 1095, 10.1016/j.bpj.2011.07.031 Siegel, 1999, The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion, Biophys. J., 76, 291, 10.1016/S0006-3495(99)77197-3 Smirnova, 2010, Solvent-exposed tails as prestalk transition states for membrane fusion at low hydration, J. Am. Chem. Soc., 132, 6710, 10.1021/ja910050x Kasson, 2010, Atomic-resolution simulations predict a transition state for vesicle fusion defined by contact of a few lipid tails, PLOS Comput. Biol., 6, e1000829, 10.1371/journal.pcbi.1000829 Kozlov, 1994, Bending, hydration and interstitial energies quantitatively account for the hexagonal-lamellar-hexagonal reentrant phase transition in dioleoylphosphatidylethanolamine, Biophys. J., 67, 1603, 10.1016/S0006-3495(94)80633-2