The Tetragonal‐Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends

Journal of the American Ceramic Society - Tập 92 Số 9 - Trang 1901-1920 - 2009
Jérôme Chevalier1, Laurent Grémillard1, Anil V. Virkar2, David R. Clarke3
1University of Lyon, INSA-Lyon, MATEIS, Villeurbanne FR-69621, France
2Department of Material Science & Engineering, University of Utah, Salt Lake City, Utah 84112
3School of Engineering and Applied Sciences Harvard University Cambridge, Massachusetts 02138

Tóm tắt

Zirconia ceramics have found broad applications in a variety of energy and biomedical applications because of their unusual combination of strength, fracture toughness, ionic conductivity, and low thermal conductivity. These attractive characteristics are largely associated with the stabilization of the tetragonal and cubic phases through alloying with aliovalent ions. The large concentration of vacancies introduced to charge compensate of the aliovalent alloying is responsible for both the exceptionally high ionic conductivity and the unusually low, and temperature independent, thermal conductivity. The high fracture toughness exhibited by many of zirconia ceramics is attributed to the constraint of the tetragonal‐to‐monoclinic phase transformation and its release during crack propagation. In other zirconia ceramics containing the tetragonal phase, the high fracture toughness is associated with ferroelastic domain switching. However, many of these attractive features of zirconia, especially fracture toughness and strength, are compromised after prolonged exposure to water vapor at intermediate temperatures (∼30°–300°C) in a process referred to as low‐temperature degradation (LTD), and initially identified over two decades ago. This is particularly so for zirconia in biomedical applications, such as hip implants and dental restorations. Less well substantiated is the possibility that the same process can also occur in zirconia used in other applications, for instance, zirconia thermal barrier coatings after long exposure at high temperature. Based on experience with the failure of zirconia femoral heads, as well as studies of LTD, it is shown that many of the problems of LTD can be mitigated by the appropriate choice of alloying and/or process control.

Từ khóa


Tài liệu tham khảo

10.1038/258703a0

Virkar A. V., 1986, Ferroelastic Domain Switching as a Toughening Mechanism in Tetragonal Zirconia, J. Am. Ceram. Soc., 69, C224, 10.1111/j.1151-2916.1986.tb07341.x

Green D. J., 1989, Transformation Toughening of Ceramics, 137

Ruff O., 1929, Contributions on the Ceramics of Highly Fireproof Material I, The Forms of Zirconium Dioxide, 180, 19

10.1016/0167-2738(96)00386-4

10.1146/annurev.matsci.33.011403.113718

10.1149/1.2778219

10.1063/1.1628379

10.1007/BF01031853

10.3139/146.017909

10.1016/j.jallcom.2005.09.079

10.1111/j.1151-2916.1994.tb07064.x

10.1111/j.1151-2916.1993.tb08345.x

10.1016/j.biomaterials.2004.01.002

Ondik H. M., 1998, Phase Diagrams for Zirconium and Zirconia Systems

10.1007/BF00553928

10.1021/j100491a016

Pitcher M. W., 2005, Energy Crossovers in Nanocrystalline Zirconia, J. Am. Ceram. Soc., 88, 160, 10.1111/j.1551-2916.2004.00031.x

10.1111/j.1151-2916.2003.tb00025.x

Li P., 1994, Effect of Dopants on Zirconia Stabilization—An X‐Ray Absorption Study, I, Trivalent Dopants, 77, 118

10.1021/cm040167h

10.1016/S1359-6454(02)00385-3

Li P., 1994, Effect of Dopants on Zirconia Stabilization—an X‐Ray Absorption Study, II, Tetravalent Dopants, 77, 1281

10.1016/j.ssi.2006.02.030

10.1007/BF00809057

10.1111/j.1151-2916.1983.tb10016.x

10.1016/S1359-6454(04)00526-9

Eichler J., 2007, Effect of Grain Size on Mechanical Properties of Submicrometer 3Y‐TZP, Fracture Strength and Hydrothermal Degradation, 90, 2830

10.1016/j.msea.2005.12.064

10.1016/S0079-6425(00)00005-0

10.1016/S1359-6454(04)00525-7

10.1016/j.jeurceramsoc.2004.07.029

10.1111/j.1151-2916.1982.tb10426.x

Chevalier J., 1999, Subcritical Crack Propagation in 3Y‐TZP Ceramics, Static and Cyclic Fatigue, 82, 3129

K.Prettyman “Ferroelastic Domain Formation and Switching as a Toughening Mechanism in Ceria‐Doped Zirconia”; Ph.D. Dissertation Utah University Salt Lake City UT 1991.

Chevalier J., 1999, Low‐Temperature Aging of Y‐TZP Ceramics, J. Am. Ceram. Soc., 82, 2150, 10.1111/j.1151-2916.1999.tb02055.x

10.1016/j.surfcoat.2005.07.089

10.1016/j.jeurceramsoc.2003.11.025

H.El Attaoui “Influence du renforcement sur le comportement en fatigue statique et cyclique des céramiques monolithiques de type alumine et zircone (Influence of Toughening on Static and Cyclic Fatigue Behaviour of Monolithic Alumina and Zirconia Ceramics)”; Ph.D. Thesis INSA‐Lyon France 2003.

10.1007/978-1-4615-5853-8_5

10.1111/j.1551-2916.2008.02700.x

10.1016/j.jeurceramsoc.2006.04.123

10.1007/BF00819957

10.1016/j.actamat.2006.11.007

10.1111/j.1151-2916.2003.tb03639.x

10.1111/j.1551-2916.2004.00746.x

Schubert H., 2005, Stability of Y‐TZP During Hydrothermal Treatment, Neutron Experiments and Stability Considerations, 25, 1597

10.1016/j.actamat.2008.04.050

Jue J. F., 1991, Low Temperature Aging of t'‐Zirconia, The Role of Microstructure and Phase Stability, 74, 1811

10.1146/annurev.matsci.37.052506.084250

Cales B., 2000, Zirconia as a Sliding Material, Histologic, Laboratory, and Clinical Data, 379, 94

Hip Implants Recalled Because of Potential Fracture Problem FDA Patient Safety News: Show #2 March 2002 available athttp://www.accessdata.fda.gov/scripts/cdrh/cfdocs/psn/printer.cfm?id=107(accessed on July 28 2009).

10.1016/j.dental.2007.05.007

10.1007/BF00615460

Kim D. J., 1998, Fracture Toughness, Ionic Conductivity, and Low‐Temperature Phase Stability of Tetragonal Zirconia Codoped with Yttria and Niobium Oxide, J. Am. Ceram. Soc., 81, 2309, 10.1111/j.1151-2916.1998.tb02626.x

10.1016/j.actamat.2008.11.028

National Research Council., 1996, Coatings for High Temperature Structural Materials: Trends and Opportunities

10.1016/S1270-9638(02)00003-2

Kingery W. D., 1976, Introduction to ceramics

S.StecuraOptimization of the NiCrAl–Y/ZrO2–Y2O3Thermal Barrier System. NASA Report TM‐86905 1985

10.1098/rspa.2007.1829

10.1016/j.jeurceramsoc.2003.10.045

10.1016/j.biomaterials.2005.11.021

10.1111/j.1151-2916.1989.tb06124.x

10.1111/j.1151-2916.1990.tb09832.x

10.1302/0301-620X.81B5.9454

10.1111/j.1151-2916.2004.tb07505.x

10.1016/S0167-2738(01)00817-7

US Food and Drug Administration. “Steam Re‐Sterilization Causes Deterioration of Zirconia Ceramic Heads of Total Hip Prostheses 1997. Available athttp://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/PublicHealthNotifications/ucm062472.htm(accessed on July 28 2009).

Sato T., 1985, Transformation of Ceria‐Doped Tetragonal Zirconia Polycrystals by Annealing in Water, Am. Ceram. Soc. Bull., 64, 1382

10.1111/j.1151-2916.1994.tb04533.x

10.1016/j.surfcoat.2006.11.011

10.1016/0956-7151(94)90377-8

10.1002/adma.200390117

10.1002/3527602798

Roy M. E., 2007, Not all Zirconia Femoral Heads Degrade In Vivo, Clin. Orthop. Rel. Res., 465, 220, 10.1097/BLO.0b013e318158b4d3

10.1002/9780470310557.ch13

10.1007/BF01756800

10.1039/b007789p

Doung T., J. Am. Ceram. Soc.

10.1016/0009-2614(95)00905-J