The Suppressive Field of Neurons in Lateral Geniculate Nucleus

Journal of Neuroscience - Tập 25 Số 47 - Trang 10844-10856 - 2005
Vincent Bonin1, Valerio Mante2,3, Matteo Carandini2,3
1Smith Kettlewell Eye Research Institute, San Francisco, California 94115, USA.
2Institute of Neuroinformatics, University of Zurich and Swiss Federal Institute of Technology, CH-8057 Zurich, Switzerland
3Smith-Kettlewell Eye Research Institute, San Francisco, California 94115, and

Tóm tắt

The responses of neurons in lateral geniculate nucleus (LGN) exhibit powerful suppressive phenomena such as contrast saturation, size tuning, and masking. These phenomena cannot be explained by the classical center-surround receptive field and have been ascribed to a variety of mechanisms, including feedback from cortex. We asked whether these phenomena might all be explained by a single mechanism, contrast gain control, which is inherited from retina and possibly strengthened in thalamus. We formalized an intuitive model of retinal contrast gain control that explicitly predicts gain as a function of local contrast. In the model, the output of the receptive field is divided by the output of a suppressive field, which computes the local root-mean-square contrast. The model provides good fits to LGN responses to a variety of stimuli; with a single set of parameters, it captures saturation, size tuning, and masking. It also correctly predicts that responses to small stimuli grow proportionally with contrast: were it not for the suppressive field, LGN responses would be linear. We characterized the suppressive field and found that it is similar in size to the surround of the classical receptive field (which is eight times larger than commonly estimated), it is not selective for stimulus orientation, and it responds to a wide range of frequencies, including very low spatial frequencies and high temporal frequencies. The latter property is hardly consistent with feedback from cortex. These measurements thoroughly describe the visual properties of contrast gain control in LGN and provide a parsimonious explanation for disparate suppressive phenomena.

Từ khóa


Tài liệu tham khảo

10.1111/j.1748-1716.1983.tb07259.x

1982, Exp Brain Res, 46, 118, 10.1007/BF00238105

10.1017/S0952523800010336

1982, J Neurophysiol, 48, 217, 10.1152/jn.1982.48.1.217

10.1016/S0959-4388(03)00096-5

10.1152/jn.00943.2003

2002, Soc Neurosci Abstr, 28, 658.16

10.1016/S0896-6273(02)01050-4

10.1017/S0952523899162151

10.1017/S0952523800004314

10.1163/156856897X00357

1997, J Neurosci, 17, 8621, 10.1523/JNEUROSCI.17-21-08621.1997

10.1152/jn.00692.2001

2001, J Neurosci, 21, 9904, 10.1523/JNEUROSCI.21-24-09904.2001

1995, J Neurophysiol, 74, 2548, 10.1152/jn.1995.74.6.2548

1988, Invest Ophthalmol Vis Sci, 29, 644

1985, J Physiol (Lond), 369, 249, 10.1113/jphysiol.1985.sp015899

1983, J Neurosci, 3, 108, 10.1523/JNEUROSCI.03-01-00108.1983

1983, J Physiol (Lond), 345, 27, 10.1113/jphysiol.1983.sp014963

1996, J Physiol (Lond), 490, 481, 10.1113/jphysiol.1996.sp021159

10.1364/JOSAA.2.001160

10.1016/0042-6989(84)90109-3

1993, J Neurophysiol, 69, 1118, 10.1152/jn.1993.69.4.1118

10.1016/S0896-6273(02)01100-5

1999, J Neurosci, 19, 9756, 10.1523/JNEUROSCI.19-22-09756.1999

1984, J Physiol (Lond), 357, 219, 10.1113/jphysiol.1984.sp015498

1979, J Physiol (Lond), 289, 299, 10.1113/jphysiol.1979.sp012738

1977, J Neurophysiol, 40, 410, 10.1152/jn.1977.40.2.410

1966, J Physiol (Lond), 187, 517, 10.1113/jphysiol.1966.sp008107

10.1017/S0952523899165143

10.1017/S0952523801182064

10.1016/S0896-6273(02)00819-X

10.1017/S0952523898154111

10.1046/j.1460-9568.2002.02278.x

10.1017/S0952523800009640

1976, J Physiol (Lond), 262, 265, 10.1113/jphysiol.1976.sp011595

1961, J Physiol (Lond), 155, 385, 10.1113/jphysiol.1961.sp006635

1972, J Physiol (Lond), 226, 81P

1975, Exp Brain Res, 22, 363

1991, J Physiol (Lond), 444, 329, 10.1113/jphysiol.1991.sp018881

10.1111/j.1460-9568.1994.tb00618.x

10.1007/s002210000574

10.1016/S0079-6123(01)34003-7

1987, J Physiol (Lond), 391, 267, 10.1113/jphysiol.1987.sp016737

10.1113/jphysiol.2002.027748

2001, J Neurosci, 21, 287, 10.1523/JNEUROSCI.21-01-00287.2001

2001, J Neurophysiol, 85, 235, 10.1152/jn.2001.85.1.235

10.1167/4.7.10

1973, Exp Brain Res, 18, 316

1965, J Neurophysiol, 28, 555, 10.1152/jn.1965.28.3.555

1972, Invest Ophthalmol, 11, 302

10.1016/0042-6989(73)90201-0

Mante V, Frazor RA, Bonin V, Geisler WS, Carandini M (2005) Independence of luminance and contrast in natural images and in the early visual system. Nat Neurosci, in press.

1964, J Neurophysiol, 27, 1154, 10.1152/jn.1964.27.6.1154

1967, J Neurophysiol, 30, 1, 10.1152/jn.1967.30.1.1

1978, J Physiol (Lond), 283, 101, 10.1113/jphysiol.1978.sp012490

10.1038/329727a0

1994, Vis Neurosci, 11, 781, 10.1017/S0952523800003084

10.1152/jn.00176.2004

1985, J Neurophysiol, 54, 651, 10.1152/jn.1985.54.3.651

10.1523/JNEUROSCI.3852-03.2004

2001, J Neurosci, 21, 5794, 10.1523/JNEUROSCI.21-15-05794.2001

10.1163/156856897X00366

2004, Soc Neurosci Abstr, 30, 598.5

1987, Exp Brain Res, 68, 28

10.1017/S0952523800174012

10.1016/0042-6989(65)90033-7

2000, J Neurosci, 20, 4267, 10.1523/JNEUROSCI.20-11-04267.2000

10.1002/cne.901430107

1990, J Neurophysiol, 64, 206, 10.1152/jn.1990.64.1.206

10.1017/S0952523800005101

10.1038/11197

10.1038/90526

10.1007/BF00270692

10.1016/0042-6989(90)90123-3

1979, J Physiol (Lond), 290, 141, 10.1113/jphysiol.1979.sp012765

1978, J Physiol (Lond), 285, 275, 10.1113/jphysiol.1978.sp012571

1981, J Physiol (Lond), 318, 161, 10.1113/jphysiol.1981.sp013856

1986, Exp Brain Res, 63, 1

10.1017/S0952523800008518

1989, J Neurosci, 9, 4287, 10.1523/JNEUROSCI.09-12-04287.1989

10.1098/rstb.2002.1170

1993, Exp Brain Res, 93, 6

1970, Exp Brain Res, 10, 311

1981, J Neurophysiol, 45, 107, 10.1152/jn.1981.45.1.107

2002, J Neurosci, 22, 338, 10.1523/JNEUROSCI.22-01-00338.2002

10.1016/S0896-6273(04)00178-3

1987, J Neurophysiol, 58, 267, 10.1152/jn.1987.58.2.267

10.1016/j.neuroscience.2004.01.036

1991, J Neurophysiol, 65, 1528, 10.1152/jn.1991.65.6.1528

2003, Network, 14, 733, 10.1088/0954-898X_14_4_306

1987, J Physiol (Lond), 386, 219, 10.1113/jphysiol.1987.sp016531

1982, Exp Brain Res, 46, 157, 10.1007/BF00237172

10.1017/S0952523802195046

10.1152/jn.00826.2004

10.1098/rstb.2002.1159

1994, Exp Brain Res, 101, 307, 10.1007/BF00228751

1988, Exp Brain Res, 69, 497

10.1016/S0006-8993(02)03765-4

2003, J Neurosci, 23, 2645, 10.1523/JNEUROSCI.23-07-02645.2003

10.1523/JNEUROSCI.2782-04.2005