Sự ổn định siêu đàn hồi của hợp kim nhớ hình Ni-51 at.% Ti tinh thể nano

Taotao Wang1, Fangmin Guo2, Yapeng Li1, Junjie Ye3
1School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong, China
2Department of Materials Science and Engineering, China University of Petroleum Beijing, Beijing, China
3Xi’an Saitesimai Titanium Industry Co Ltd, Xi’an, China

Tóm tắt

Các hợp kim nhớ hình NiTi đã được nghiên cứu rộng rãi nhờ vào tính siêu đàn hồi của chúng. Tuy nhiên, ứng dụng của các hợp kim NiTi hạt thô bị hạn chế do ứng suất siêu đàn hồi thấp và độ ổn định siêu đàn hồi kém sau biến dạng chu kỳ, chủ yếu là do sức bền chảy thấp của chúng. Trong nghiên cứu này, phương pháp kéo lạnh biến dạng lớn và ủ ở nhiệt độ thấp đã được sử dụng để chế tạo mẫu dây Ni51Ti49 (at.%) tinh thể nano (kích thước hạt trung bình ~ 14 nm). Sau hai mươi chu kỳ nén (lên tới 6%) - giãn, hợp kim Ni51Ti49 cho thấy ứng suất siêu đàn hồi đạt 1051 MPa, độ biến dạng dư là 0,66% và tỷ lệ giảm ứng suất siêu đàn hồi là 9%, điều này rõ ràng vượt trội hơn so với NiTi tinh thể nano có cùng kích thước hạt cũng như các hợp kim NiTi hạt thô trước đây. Chúng tôi đã đề xuất rằng điều này chủ yếu xuất phát từ ma trận NiTi đã được cải thiện đáng kể nhờ vào sự gia tăng hiệu ứng đồng vận của các ranh giới hạt mật độ cao và các nguyên tử Ni được dop trong SMAs Ni51Ti49 tinh thể nano, làm giảm biến dạng dẻo và thể hiện độ ổn định siêu đàn hồi cao.

Từ khóa

#Hợp kim nhớ hình #NiTi #Siêu đàn hồi #Tinh thể nano #Biến dạng chu kỳ

Tài liệu tham khảo

T. Alonso, D. Favier, and G. Chagnon, Characterizing Transformation Phenomena and Elastic Moduli of Austenite and Oriented Martensite of Superelastic Thin NiTi Wire through Isothermal Dynamic Mechanical Analysis, J. Mater. Eng. Perform., 2019, 28, p 4667–4679. J. Apell, M. Rettenmayr, and A. Undisz, Evaluation Methods for Non-contact Bend and Free Recovery Tests of Thin NiTi Wires and Their Effects on Measured Transformation Temperatures, J. Mater. Eng. Perform., 2020, 29, p 5435–5441. D.M. Norfleet, P.M. Sarosi, S. Manchiraju, M.F.X. Wagner, M.D. Uchic, P.M. Anderson, and M.J. Mills, Transformation-Induced Plasticity During Pseudoelastic Deformation in Ni–Ti Microcrystals, Acta Mater., 2009, 57, p 3549–3561. W.-N. Hsu, E. Polatidis, M. Šmíd, S. Van Petegem, N. Casati, and H. Van Swygenhoven, Deformation and Degradation of Superelastic NiTi Under Multiaxial Loading, Acta Mater., 2019, 167, p 149–158. W.-S. Ko, W.S. Choi, G. Xu, P.-P. Choi, Y. Ikeda, and B. Grabowski, Dissecting Functional Degradation in NiTi Shape Memory Alloys Containing Amorphous Regions Via Atomistic Simulations, Acta Mater, 2012, 202, p 331–349. L. Xia, Q. Wu, K. Zhou, B. Han, F. He, and Z. Wang, Concurrent Recrystallization and Precipitation for Combination of Superior Precipitation and Grain Boundary Hardening in Co37Cr20Ni37Ti3Al3 High-Entropy Alloy, Methods Mater. Int, 2022, 28, p 2863–2873. Y. Fan, X. Tang, S. Wang, and B. Chen, Comparisons of Age Hardening and Precipitation Behavior in 7075 Alloy Under Single and Double-Stage Aging Treatments, Methods Mater. Int., 2021, 27, p 4204–4215. X. Wang, Z. Pu, Q. Yang, S. Huang, Z. Wang, S. Kustov, and J. Van Humbeeck, Improved Functional Stability of a Coarse-Grained Ti-50.8 at.% Ni Shape Memory Alloy Achieved by Precipitation on Dislocation Networks, Scripta Mater., 2019, 163, p 57–61. X. Li, H. Chen, W. Guo, Y. Guan, Z. Wang, Q. Zeng, and X. Wang, Improved Superelastic Stability of NiTi Shape Memory Alloys Through Surface Nano-crysTallization Followed by Low Temperature Aging Treatment, Intermetallics, 2021, 131, p 107114. X. Wang, S. Kustov, K. Li, D. Schryvers, B. Verlinden, and J. Van Humbeeck, Effect of Nanoprecipitates on the Transformation Behavior and Functional Properties of a Ti-50.8 at.% Ni Alloy with Micron-Sized Grains, Acta Mater., 2015, 82, p 224–233. M. Kato, Hall-Petch Relationship and Dislocation Model for Deformation of Ultrafine-Grained and Nanocrystalline Metals, Mater. Trans., 2014, 55, p 19–24. C.S. Pande and K.P. Cooper, Nanomechanics of Hall-Petch Relationship in Nanocrystalline Materials, Prog. Mater. Sci., 2009, 54, p 689–706. Y. Chen, O. Tyc, O. Molnárová, L. Heller, and P. Šittner, Tensile Deformation of Superelastic NiTi Wires in Wide Temperature and Microstructure Ranges, Shap Mem Superelasticity, 2018, 5, p 42–62. R. Delville, B. Malard, J. Pilch, P. Sittner, and D. Schryvers, Microstructure Changes During Non-Conventional Heat Treatment of Thin Ni-Ti Wires by Pulsed Electric Current Studied by Transmission Electron Microscopy, Acta Mater., 2010, 58, p 4503–4515. S. Mao, M.H. Wu, Z. Zhang, F. Hao, D. Liu, Y. Zhang, and B. Hou, Effect of Cyclic Loading on Apparent Young’s Modulus and Critical Stress in Nano-Subgrained Superelastic NiTi Shape Memory Alloys, Mater. Trans., 2006, 47, p 735–741. V. Brailovski, S. Prokoshkin, K. Inaekyan, and V. Demers, Functional Properties of Nanocrystalline, Submicrocrystalline and Polygonized Ti-Ni Alloys Processed by Cold Rolling and Post-Deformation Annealing, J. Alloys Compd., 2011, 509, p 2062075. J. Zhang, D. Xue, X. Cai, X. Ding, X. Ren, and J. Sun, Dislocation Induced Strain Glass in Ti50Ni45Fe5 Alloy, Acta Mater., 2016, 120, p 130–137. D. Jiang, J. An, Y. Liu, Z. Ma, F. Liu, H. Yang, X. Ren, K. Yu, J. Zhang, X. Jiang, Y. Ren, and L. Cui, Nanocrystalline Strain Glass TiNiPt and Its Superelastic Behavior, Phys. Rev. B, 2021, 104, p 024102. T. Wang, Z. Ma, X. Rao, D. Jiang, Y. Ren, Y. Liu, K.Y. Yu, and L. Cui, Temperature-Dependence of Superelastic Stress in Nanocrystalline NiTi with Complete Transformation Capability, Intermetallics, 2020, 127, p 106970. B. Yan, S. Jiang, D. Sun, J. Yu, and Y. Zhang, Comparison for Grain Growth Dynamics of Severely Deformed Austenite and Martensite NiTi Shape Memory Alloys after Complete Crystallization of Amorphous Phase, J. Mater. Eng. Perform, 2021, 30, p 6191. E. Sharifi, A. Kermanpur, F. Karimzadeh, and A. Esmaili, Formation of the Nanocrystalline Structure in an Equiatomic NiTi Shape-Memory Alloy by Thermomechanical Processing, J. Mater. Eng. Perform., 2014, 23, p 1408–1414. J.Y. Huang, Y.T. Zhu, X.Z. Liao, and R.Z. Valiev, Amorphization of TiNi Induced by High-Pressure Torsion, Philos. Mag. Lett., 2004, 84, p 183–190. J. Koike, D.M. Parkin, and M. Nastasi, Crystal-to-Amorphous Transformation of NiTi Induced by Cold Rolling, J. Mater. Res., 1990, 5, p 1414–1418. P. Sittner, Y. Liu, and V. Novak, On the Origin of Lüders-Like Deformation of NiTi Shape Memory Alloys, J. Mech. Phys. Solids, 2005, 53, p 1719–1746. P. Sedmák, P. Šittner, J. Pilch, and C. Curfs, Instability of Cyclic Superelastic Deformation of NiTi Investigated by Synchrotron X-ray Diffraction, Acta Mater., 2015, 94, p 257–270. J. Frenzel, E.P. George, A. Dlouhy, C. Somsen, M.F.X. Wagner, and G. Eggeler, Influence of Ni on martensitic phase transformations in NiTi shape memory alloys, Acta Mater., 2010, 58, p 3444–3458. J. Frenzel, A. Wieczorek, I. Opahle, B. Maaß, R. Drautz, and G. Eggeler, On the Effect of Alloy Composition on Martensite Start Temperatures and Latent Heats in Ni–Ti-Based Shape Memory Alloys, Acta Mater., 2015, 90, p 213–231. Y. Yang, D. Xue, R. Yuan, Y. Zhou, T. Lookman, X. Ding, X. Ren, and J. Sun, Doping Effects of Point Defects in Shape Memory Alloys, Acta Mater., 2019, 176, p 177–188. S. Sarkar, X. Ren, and K. Otsuka, Evidence for Strain Glass in the Ferroelastic-Martensitic System Ti(50–x)Ni(50+x), Phys. Rev. Lett., 2005, 95, p 205702. J. Romanò, F. Lazzari, L. Garavaglia, and S. Pittaccio, Short Duration Heat Treatments before Aging Increase Mechanical Hysteresis of Pseudoelastic NiTi Alloy, J. Mater. Eng. Perform., 2022, 31, p 5478–5484. X. Zhao, X. Yan, Y. Yang, and H. Xu, Wide Hysteresis NiTi(Nb) Shape Memory Alloys with Low Nb Content (4.5 at.%), Mater. Sci. Eng. A, 2006, 438, p 575–578. Y.X. Tong, F. Chen, B. Guo, B. Tian, L. Li, Y.F. Zheng, D.V. Gunderov, and R.Z. Valiev, Superelasticity and its Stability of an Ultrafine-Grained Ti49.2Ni50.8 Shape Memory Alloy Processed by Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2013, 587, p 61–64. O. Tyc, L. Heller, M. Vronka, and P. Šittner, Effect of Temperature on Fatigue of Superelastic NiTi Wires, Int. J. Fatigue, 2020, 134, p 105470. S. Liu, Y. Lin, G. Wang, and X. Wang, Effect of Varisized Ni4Ti3 Precipitate on the Phase Transformation Behavior and Functional Stability of Ti-50.8 at.% Ni Alloys, Mater. Charact., 2021, 172, p 110832. N. Zotov, M. Pfund, E. Polatidis, A.F. Mark, and E.J. Mittemeijer, Change of Transformation Mechanism During Pseudoelastic Cycling of NiTi Shape Memory Alloys, Mater. Sci. Eng. A, 2017, 682, p 178–191. M. Yawny and G. Eggeler, Pseudoelastic Cycling of Ultra-Fine-Grained NiTi Shape-Memory Wires, Z. fur Metall., 2005, 96, p 608–618. J. Olbricht, A. Yawny, A.M. Condó, F.C. Lovey, and G. Eggeler, The Influence of Temperature on the Evolution of Functional Properties During Pseudoelastic Cycling of Ultra Fine Grained NiTi, Mater. Sci. Eng. A, 2008, 481, p 142–145. T. Waitz, T. Antretter, F.D. Fischer, N.K. Simha, and H.P. Karnthaler, Size Effects on the Martensitic Phase Transformation of NiTi Nanograins, J. Mech. Phys. Solids, 2007, 55, p 419–444. P. Wollants, J.R. Roos, and L. Delaey, Thermally- and Stress-Induced Thermoelastic Martensitic Transformations in the Reference Frame of Equilibrium Thermodynamics, Prog. Mater. Sci., 1993, 37, p 227–288.