The Structure and Wear Resistance of the Surface Layers Obtained by the Atmospheric Electron Beam Cladding of TiC on Titanium Substrates

Applied Mechanics and Materials - Tập 682 - Trang 14-20
O G Lenivtseva, Daria V. Lazurenko, V V Samoylenko

Tóm tắt

In this study the structure and properties of surface layers obtained on cp-titanium workpieces by non-vacuum electron beam cladding of titanium carbide powder were investigated. The structure of modified materials was examined by optical microscopy and scanning electron microscopy. It was shown that the cladded layer had a high quality and thickness of about 2.3 mm. The cladded layer microstructure consisted of high-strength titanium carbide crystals distributed in titanium matrix. Morphology of titanium carbide particles and their volume fraction changed in the direction from the surface layer to the heat affected zone. The average microhardness value of the cladded layer was ~500 HV. Surface alloyed layers were of higher wear resistance compared to cp-titanium.

Từ khóa


Tài liệu tham khảo

G. Lütjering, J. C. Williams, Titanium (Engineering Materials and Processes), second ed., Springer, (2007).

S. Ettaqi , V. Hays, J.J. Hantzpergue , G. Saindrenan , J.C. Remy,  Mechanical, structural and tribological properties of titanium nitrided by a pulsed laser, Surf. Coat. Technol. 100/101 (1998) 428–432.

B. Courant, J.J. Hantzpergue, S. Benayoun, Surface Treatment of titanium by laser irradiation to improve resistance to dry-sliding friction, Wear. 236 (1999) 39–46.

E. Yun , K. Lee , S. Lee,  Improvement of high-temperature hardness of (TiC, TiB)/Ti–6Al–4V surface composites fabricated by high-energy electron-beam , Surf. Coat. Technol. 184 (2004) 74–83.

A.F. Saleh, J.H. Abboud, K.Y. Benyounis, Surface carburizing of Ti–6Al–4V alloy by laser melting, Optics and Lasers in Engineering. 48 (2010) 257-267.

M.J. Hamedi, M.J. Torkamany, J. Sabbaghzadeh, Effect of pulsed laser parameters on in-situ TiC synthesis in laser surface treatment, Optics and Lasers in Engineering. 49 (2011) 557-563.

M.M. Savalani, C.C. Ng, Q.H. Li, H.C. Man, In situ formation of titanium carbide using titanium and carbon-nanotube powders by laser cladding, Appl. Surf. Sci. 258 (2012) 3173–3177.

J. Li, Z. Yu, H. Wang, M. Li, Microstructure and Mechanical Properties of an in situ Synthesized TiB and TiC Reinforced Titanium Matrix Composite Coating, J. Wuhan Univ. Tech. Mater. Sci. 27 (2012) 1-7.

P.K. Farayibi, J. Folkes, A. Clare, O. Oyelola, Cladding of pre-blended Ti–6Al–4V and WC powder for wear resistant applications, Surf. Coat. Technol. 206 (2011) 372–377.

O.G. Lenivtseva, I. A Bataev, N.S. Belousova, E.D. Golovin, T.A. Zimoglyadova, Atmospheric electron-beam cladding of carbon containing powder mixtures onto technically pure titanium VT1-0, Obrabotka metallov. 4 (2013) 49-57.

O.G. Lenivtseva, O.A. Butylenkova, E.D. Golovin, M.G. Golkovsky, High-energy electron beam cladding of titanium and carbon on titanium alloy, The 8th International forum on strategic technology 2013 (IFOST 2013). 1 (2013) 152-155.

J. Oh, S. Lee, M.G. Golkovski, Improvement of the hardness and ware resistance of (TiC, TiN)/Ti-6AI-4V surface-alloyed materials fabricated by high-energy electron-beam irradiation, Metal. Mater. Trans. 32 (2001) 2995–3005.

I.A. Bataev, A.A. Bataev, M.G. Golkovski, D.S. Krivizhenko, A.A. Losinskaya, O.G. Lenivtseva. Structure of surface layers produced by non-vacuum electron beam boriding, Appl. Surf. Sci. 284 (2013) 472– 481.

I.A. Bataev, M.G. Golkovskii, A.A. Bataev, A.A. Losinskaya, R. Dostovalov, A.A. Popelyukh, E.A. Drobyaz, Surface hardening of steels with carbon by non-vacuum electron-beam processing, Surf. Coat. Technol. 242 (2014) 164–169.

I.A. Bataev, A.A. Bataev, M.G. Golkovsky, A.Y. Teplykh, V.G. Burov, S.V. Veselov, Non-vacuum electron-beam boriding of low-carbon steel. Surf. Coat. Technol. 207 (2012) 245-53.

D.O. Mul, E.A. Drobyaz., I.K. Chakin, V.V. Samoylenko, V.S. Lozhkin, R.A. Dostovalov Structure and properties of steel under non-vacuum electron-beam welding deposition of titanium, tantalum, molybdenum and graphite powders, Obrabotka metallov. 3 (2013).