The Stochastic Viscous Cahn–Hilliard Equation: Well-Posedness, Regularity and Vanishing Viscosity Limit
Tóm tắt
Từ khóa
Tài liệu tham khảo
Antonopoulou, D.C., Karali, G., Millet, A.: Existence and regularity of solution for a stochastic Cahn-Hilliard/Allen-Cahn equation with unbounded noise diffusion. J. Differ. Equ. 260(3), 2383–2417 (2016)
Barbu, V., Da Prato, G., Röckner, M.: Existence of strong solutions for stochastic porous media equation under general monotonicity conditions. Ann. Probab. 37(2), 428–452 (2009)
Bauzet, C., Bonetti, E., Bonfanti, G., Lebon, F., Vallet, G.: A global existence and uniqueness result for a stochastic Allen-Cahn equation with constraint. Math. Methods Appl. Sci. 40(14), 5241–5261 (2017)
Bonetti, E., Colli, P., Scarpa, L., Tomassetti, G.: A doubly nonlinear Cahn-Hilliard system with nonlinear viscosity. Commun. Pure Appl. Anal. 17(3), 1001–1022 (2018)
Brézis, H.: Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. In: Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971), pp. 101–156. Academic Press, New York (1971)
Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. i. interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)
Cherfils, L., Petcu, M.: A numerical analysis of the Cahn-Hilliard equation with non-permeable walls. Numer. Math. 128(3), 517–549 (2014)
Cherfils, L., Miranville, A., Zelik, S.: The Cahn-Hilliard equation with logarithmic potentials. Milan J. Math. 79(2), 561–596 (2011)
Cherfils, L., Gatti, S., Miranville, A.: A variational approach to a Cahn-Hilliard model in a domain with nonpermeable walls. J. Math. Sci. (N.Y.) 189(4), 604–636 (2013). (Problems in mathematical analysis. No. 69)
Colli, P., Fukao, T.: Cahn-Hilliard equation with dynamic boundary conditions and mass constraint on the boundary. J. Math. Anal. Appl. 429(2), 1190–1213 (2015)
Colli, P., Fukao, T.: Equation and dynamic boundary condition of Cahn-Hilliard type with singular potentials. Nonlinear Anal. 127, 413–433 (2015)
Colli, P., Fukao, T.: Nonlinear diffusion equations as asymptotic limits of Cahn-Hilliard systems. J. Differ. Equ. 260(9), 6930–6959 (2016)
Colli, P., Scarpa, L.: From the viscous Cahn-Hilliard equation to a regularized forward-backward parabolic equation. Asymptot. Anal. 99(3–4), 183–205 (2016)
Colli, P., Gilardi, G., Sprekels, J.: On the Cahn-Hilliard equation with dynamic boundary conditions and a dominating boundary potential. J. Math. Anal. Appl. 419(2), 972–994 (2014)
Colli, P., Farshbaf-Shaker, M.H., Gilardi, G., Sprekels, J.: Optimal boundary control of a viscous Cahn-Hilliard system with dynamic boundary condition and double obstacle potentials. SIAM J. Control Optim. 53(4), 2696–2721 (2015)
Colli, P., Gilardi, G., Hilhorst, D.: On a Cahn-Hilliard type phase field system related to tumor growth. Discret. Contin. Dyn. Syst. 35(6), 2423–2442 (2015)
Colli, P., Gilardi, G., Rocca, E., Sprekels, J.: Vanishing viscosities and error estimate for a Cahn-Hilliard type phase field system related to tumor growth. Nonlinear Anal. Real World Appl. 26, 93–108 (2015)
Colli, P., Gilardi, G., Sprekels, J.: A boundary control problem for the pure Cahn-Hilliard equation with dynamic boundary conditions. Adv. Nonlinear Anal. 4(4), 311–325 (2015)
Colli, P., Gilardi, G., Sprekels, J.: A boundary control problem for the viscous Cahn-Hilliard equation with dynamic boundary conditions. Appl. Math. Optim. 73(2), 195–225 (2016)
Colli, P., Gilardi, G., Rocca, E., Sprekels, J.: Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modelling tumor growth. Discret. Contin. Dyn. Syst. Ser. S 10(1), 37–54 (2017)
Cristini, V., Li, X., Lowengrub, J.S., Wise, S.M.: Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching. J. Math. Biol. 58(4), 723 (2008)
Da Prato, G., Debussche, A.: Stochastic Cahn-Hilliard equation. Nonlinear Anal. 26(2), 241–263 (1996)
Debussche, A., Goudenège, L.: Stochastic Cahn-Hilliard equation with double singular nonlinearities and two reflections. SIAM J. Math. Anal. 43(3), 1473–1494 (2011)
Debussche, A., Zambotti, L.: Conservative stochastic Cahn-Hilliard equation with reflection. Ann. Probab. 35(5), 1706–1739 (2007)
Elezović, N., Mikelić, A.: On the stochastic Cahn-Hilliard equation. Nonlinear Anal. 16(12), 1169–1200 (1991)
Elliott, C.M., Songmu, Z.: On the Cahn-Hilliard equation. Arch. Ration. Mech. Anal. 96(4), 339–357 (1986)
Elliott, C.M., Stuart, A.M.: Viscous Cahn-Hilliard equation. II. Analysis. J. Differ. Equ. 128(2), 387–414 (1996)
Feireisl, E., Petcu, M.: A diffuse interface model of a two-phase flow with thermal fluctuations. Appl. Math. Optim. (2019)
Feireisl, E., Petcu, M.: Stability of strong solutions for a model of incompressible two-phase flow under thermal fluctuations. J. Differ. Equ. 267(3), 1836–1858 (2019)
Frigeri, S., Grasselli, M., Rocca, E.: On a diffuse interface model of tumour growth. Eur. J. Appl. Math. 26(2), 215–243 (2015)
Garcke, H., Lam, K.F.: Analysis of a Cahn-Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis. Discret. Contin. Dyn. Syst. 37(8), 4277–4308 (2017)
Garcke, H., Lam, K.F.: Well-posedness of a Cahn-Hilliard system modelling tumour growth with chemotaxis and active transport. Eur. J. Appl. Math. 28(2), 284–316 (2017)
Garcke, H., Lam, K.F., Sitka, E., Styles, V.: A Cahn-Hilliard-Darcy model for tumour growth with chemotaxis and active transport. Math. Models Methods Appl. Sci. 26(06), 1095–1148 (2016)
Garcke, H., Lam, K.F., Rocca, E.: Optimal control of treatment time in a diffuse interface model of tumor growth. Appl. Math. Optim. 78, 49–544 (2017)
Gilardi, G., Miranville, A., Schimperna, G.: On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Commun. Pure Appl. Anal. 8(3), 881–912 (2009)
Gilardi, G., Miranville, A., Schimperna, G.: Long time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Chin. Ann. Math. Ser. B 31(5), 679–712 (2010)
Goudenège, L.: Stochastic Cahn-Hilliard equation with singular nonlinearity and reflection. Stoch. Process. Appl. 119(10), 3516–3548 (2009)
Hao, C., Wang, G.: Well-posedness for the stochastic viscous Cahn-Hilliard equation. J. Nonlinear Convex Anal. 18(12), 2219–2228 (2017)
Hawkins-Daarud, A., van der Zee, K .G., Oden., J Tinsley: Numerical simulation of a thermodynamically consistent four-species tumor growth model. Int. J. Numer. Methods Biomed. Eng. 28(1), 3–24 (2012)
Hawkins-Daarud, A., Prudhomme, S., van der Zee, K.G., Oden, J.T.: Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth. J. Math. Biol. 67(6), 1457–1485 (2013)
Hintermüller, M., Wegner, D.: Distributed optimal control of the Cahn-Hilliard system including the case of a double-obstacle homogeneous free energy density. SIAM J. Control Optim. 50(1), 388–418 (2012)
Ju, X., Wang, H., Li, D., Duan, J.: Global mild solutions and attractors for stochastic viscous Cahn-Hilliard equation. Abstr. Appl. Anal. pages Art. ID 670786, 22 (2011)
Kardestuncer, H., Norrie, D.H. (eds.): Chapters 1–3 in Finite Element Handbook. McGraw-Hill Book Co., New York (1987)
Krylov, N.V., Rozovskiĭ, B.L.: Stochastic evolution equations. In: Current Problems in Mathematics, vol. 14 (Russian)
Lee, D., Huh, J.-Y., Jeong, D., Shin, J., Yun, A., Kim, J.: Physical, mathematical, and numerical derivations of the Cahn-Hilliard equation. Comput. Mater. Sci. 81, 216–225 (2014)
Marinelli, C., Scarpa, L.: Refined existence and regularity results for a class of semilinear dissipative SPDEs. ArXiv e-prints (2017)
Marinelli, C., Scarpa, L.: Ergodicity and kolmogorov equations for dissipative spdes with singular drift: a variational approach. Potential Anal. arXiv:1710.05612
Marinelli, C., Scarpa, L.: A note on doubly nonlinear SPDEs with singular drift in divergence form. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29(4), 619–633 (2018)
Marinelli, C., Scarpa, L.: On the well-posedness of SPDEs with singular drift in divergence form. In: Eberle, A., Grothaus, M., Hoh, W., Kassmann, M., Stannat, W., Trutnau, G. (eds.) Stochastic Partial Differential Equations and Related Fields, pp. 225–235. Springer, Cham (2018)
Marinelli, C., Scarpa, L.: Strong solutions to SPDEs with monotone drift in divergence form. Stoch. Partial Differ. Equ. Anal. Comput. 6(3), 364–396 (2018)
Marinelli, C., Scarpa, L.: A variational approach to dissipative SPDEs with singular drift. Ann. Probab. 46(3), 1455–1497 (2018)
Miranville, A., Schimperna, G.: On a doubly nonlinear Cahn-Hilliard-Gurtin system. Discret. Contin. Dyn. Syst. Ser. B 14(2), 675–697 (2010)
Novick-Cohen, A.: On the viscous Cahn-Hilliard equation. In: Material instabilities in continuum mechanics (Edinburgh, 1985–1986), Oxford Sci. Publ., pp. 329–342. Oxford Univ. Press, New York (1988)
Oden, J.T., Hawkins, A., Prudhomme, S.: General diffuse-interface theories and an approach to predictive tumor growth modeling. Math. Model. Methods Appl. Sci. 20(03), 477–517 (2010)
Orrieri, C., Scarpa, L.: Singular stochastic Allen-Cahn equations with dynamic boundary conditions. J. Differ. Equ. 266(8), 4624–4667 (2019)
Pardoux, E.: Equations aux derivées partielles stochastiques nonlinéaires monotones. PhD thesis, Université Paris XI, (1975)
Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1905. Springer, Berlin (2007)
Scarpa, L.: Well-posedness for a class of doubly nonlinear stochastic PDEs of divergence type. J. Differ. Equ. 263(4), 2113–2156 (2017)
Scarpa, L.: On the stochastic Cahn-Hilliard equation with a singular double-well potential. Nonlinear Anal. 171, 102–133 (2018)
Scarpa, L.: Existence and uniqueness of solutions to singular Cahn-Hilliard equations with nonlinear viscosity terms and dynamic boundary conditions. J. Math. Anal. Appl. 469(2), 730–764 (2019)
Simon, J.: Compact sets in the space $$L^p(0, T;B)$$. Ann. Mat. Pura Appl. 4(146), 65–96 (1987)