The State of the Art of Finite Element Analysis in Mechanical Clinching

Yue Zhang1, Honghe Xu1, Ruitao Peng1, Yan Lu1, Linwei Zhu1
1School of Mechanical Engineering, Xiangtan University, Xiangtan, China

Tóm tắt

Clinching technology is a mechanical connection technology that is applied to connect metal or non-metal sheet materials. It is widely used in different applications, such as automobile, aircraft, household appliances and other industries. In order to reduce weight, save energy, reduce fuel consumption, reduce pollution and curb global warming, lightweight structures with clinched joint are increasingly used in transportation. The finite element technology is popularized in engineering, so that it can get similar results with the test after investing less time, manpower, energy and material resources, which is conducive to the prediction and smooth progress of the test. A review of the finite element analysis of clinching technology is provided in the present paper. The article’s work also discusses the strength of the clinched joint, the factors influencing the clinched joint’s strength, the failure mechanism of the clinched joint, etc. Furthermore, the novel technologies of clinching as well as the finite element models and methods used in clinching, are introduced. The present paper’s main objective was to review the recent developments in the finite element analysis of clinching and provide a basis for further investigation in this area of research.

Tài liệu tham khảo

Wang, T., Upadhyay, P., & Whalen, S. (2021). A review of technologies for welding magnesium alloys to steels. International Journal of Precision Engineering and Manufacturing - Green Technology, 8, 1027–1042. https://doi.org/10.1007/s40684-020-00247-x Rathinasuriyan, C., Pavithra, E., Sankar, R., & Kumar, V. S. S. (2021). Current status and development of submerged friction stir welding: a review. International Journal of Precision Engineering and Manufacturing - Green Technology, 8, 687–701. https://doi.org/10.1007/s40684-020-00187-6 Buffa, G., Baffari, D., Ingarao, G., & Fratini, L. (2020). Uncovering technological and environmental potentials of aluminum alloy scraps recycling through friction stir consolidation. International Journal of Precision Engineering and Manufacturing - Green Technology, 7, 955–964. https://doi.org/10.1007/s40684-019-00159-5 Das, H., Mondal, M., Hong, S. T., et al. (2018). Joining and fabrication of metal matrix composites by friction stir welding/processing. International Journal of Precision Engineering and Manufacturing - Green Technology, 5, 151–172. https://doi.org/10.1007/s40684-018-0016-7 Morichiro, K., & Abe Y. (2018). A review on mechanical joining of aluminium and high strength steel sheets by plastic deformation. International Journal of Precision Engineering and Manufacturing - Green Technology, 1, 1–11. https://doi.org/10.1016/j.ijlmm.2018.02.002 Deutsches Reichs patent. (1897). DRP-No. 98517 (in German) Lee, C.-J., Lee, S.-H., Lee, J.-M., et al. (2014). Design of hole-clinching process for joining CFRP and aluminum alloy sheet. International Journal of Precision Engineering and Manufacturing, 15, 1151–1157. https://doi.org/10.1007/s12541-014-0450-6 Lee, C. J., Lee, J. M., Ryu, H. Y., et al. (2014). Design of hole-clinching process for joining of dissimilar materials - Al6061-T4 alloy with DP780 steel, hot-pressed 22MnB5 steel, and carbon fiber reinforced plastic. Journal of Materials Processing Technology, 214, 2169–2178. https://doi.org/10.1016/j.jmatprotec.2014.03.032 Wen, T., Huang, Q., Liu, Q., et al. (2016). Joining different metallic sheets without protrusion by flat hole clinching process. International Journal of Advanced Manufacturing Technology, 85, 217–225. https://doi.org/10.1007/s00170-015-7936-y Zeng, K., He, X. C., Deng, C. J., et al. (2013). An image-based method for automatic crack detection for the mechanical test of clinch joints. Applied Mechanics and Materials, 457–458, 629–632. https://doi.org/10.4028/www.scientific.net/AMM.457-458.629 Wiesenmayer, S., Müller, M., Dornberger, P., et al. (2018). Numerical investigation of the tool load in joining by forming of dissimilar materials using shear-clinching technology. Key Engineering Materials, 767, 397–404. https://doi.org/10.4028/www.scientific.net/KEM.767.397 Wiesenmayer, S., Han, D., Müller, M., et al. (2019). Fundamental mechanisms and their interactions in shear-clinching technology and investigation of the process robustness. Materwiss Werksttech, 50, 987–1005. https://doi.org/10.1002/mawe.201900030 Graser, M., Wiesenmayer, S., Müller, M., & Merklein, M. (2019). Application of tailor heat treated blanks technology in a joining by forming process. Journal of Materials Processing Technology, 264, 259–272. https://doi.org/10.1016/j.jmatprotec.2018.09.006 Müller, M., Hörhold, R., Merklein, M., & Meschut, G. (2014). Analysis of material behaviour in experimental and simulative setup of joining by forming of aluminium alloy and high strength steel with shear-clinching technology. Advances in Materials Research, 966–967, 549–556. https://doi.org/10.4028/www.scientific.net/AMR.966-967.549 Han, D., Hörhold, R., Müller, M., et al. (2018). Shear-clinching of multi-element specimens of aluminium alloy and ultra-high-strength steel. Key Engineering Materials, 767, 389–396. https://doi.org/10.4028/www.scientific.net/KEM.767.389 Merklein, M., Meschut, G., Müller, M., & Hörhold, R. (2014). Basic investigations of non-pre-punched joining by forming of aluminium alloy and high strength steel with shear-clinching technology. Key Engineering Materials, 611–612, 1413–1420. https://doi.org/10.4028/www.scientific.net/KEM.611-612.1413 Abibe, A. B., Sônego, M., dos Santos, J. F., et al. (2016). On the feasibility of a friction-based staking joining method for polymer-metal hybrid structures. Materials and Design, 92, 632–642. https://doi.org/10.1016/j.matdes.2015.12.087 Lin, P.-C., & Lo, S.-M. (2017). Friction stir clinching of alclad AA2024-T3 sheets. International Journal of Advanced Manufacturing Technology, 92, 2425–2437. https://doi.org/10.1007/s00170-017-0337-7 Abibe, A. B., Sônego, M., Canto, L. B., et al. (2020). Process-Related Changes in Polyetherimide Joined by Friction-Based Injection Clinching Joining (F-ICJ). Materials (Basel), 13, 1027. https://doi.org/10.3390/ma13051027 Haiyan, Z., & Mehta, K. P. (2020). Effect of materials positioning on dissimilar modified friction stir clinching between aluminum 5754-O and 2024–T3 sheets. Vacuum, 178, 109445. https://doi.org/10.1016/j.vacuum.2020.109445 Paidar, M., Vaira Vignesh, R., Moharrami, A., et al. (2020). Development and characterization of dissimilar joint between AA2024-T3 and AA6061-T6 by modified friction stir clinching process. Vacuum, 176, 109298. https://doi.org/10.1016/j.vacuum.2020.109298 Zhang, Y., Shan, H., Li, Y., et al. (2017). Joining aluminum alloy 5052 sheets via novel hybrid resistance spot clinching process. Materials and Design, 118, 36–43. https://doi.org/10.1016/j.matdes.2017.01.017 Zhang, Y., Shan, H., Li, Y., et al. (2017). Effects of the oxide film on the spot joining of aluminum alloy sheets: A comparative study between resistance spot welding and resistance spot clinching. International Journal of Advanced Manufacturing Technology, 92, 4231–4240. https://doi.org/10.1007/s00170-017-0387-x Zhang, Y., Wang, C., Shan, H., et al. (2018). High-toughness joining of aluminum alloy 5754 and DQSK steel using hybrid clinching–welding process. Journal of Materials Processing Technology, 259, 33–44. https://doi.org/10.1016/j.jmatprotec.2018.04.021 Balawender, T., Sadowski, T., & Kneć, M. (2011). Technological problems and experimental investigation of hybrid: Clinched - adhesively bonded joint. Archives of Metallurgy and Materials. https://doi.org/10.2478/v10172-011-0047-3 Balawender, T., Sadowski, T., & Golewski, P. (2012). Numerical analysis and experiments of the clinch-bonded joint subjected to uniaxial tension. Computational Materials Science (pp. 270–272). Amsterdam: Elsevier. Abe, Y., Mori, K., & Kato, T. (2012). Joining of high strength steel and aluminium alloy sheets by mechanical clinching with dies for control of metal flow. Journal of Materials Processing Technology, 212, 884–889. https://doi.org/10.1016/j.jmatprotec.2011.11.015 Abe, Y., Kato, T., Mori, K. I., & Nishino, S. (2014). Mechanical clinching of ultra-high strength steel sheets and strength of joints. Journal of Materials Processing Technology, 214, 2112–2118. https://doi.org/10.1016/j.jmatprotec.2014.03.003 Abe, Y., Nihsino, S., Mori, K. I., & Saito, T. (2014). Improvement of joinability in mechanical clinching of ultra-high strength steel sheets using counter pressure with ring rubber. In Procedia engineering (pp. 2056–2061). Elsevier B.V. https://doi.org/10.4028/www.scientific.net/AMR.966-967.607 Kaščák, Ľ, Spišák, E., & Mucha, J. (2015). Mechanical joining of various materials by clinching method. Key Engineering Materials, 662, 205–208. https://doi.org/10.4028/www.scientific.net/KEM.662.205 Abe, Y., Ishihata, S., Maeda, T., & Mori, K. I. (2018). Mechanical clinching process using preforming of lower sheet for improvement of joinability. Procedia Manufacturing (pp. 1360–1367). Amsterdam: Elsevier. Abe, Y., Saito, T., Nakagawa, K., & Mori, K. I. (2018). Rectangular shear clinching for joining of ultra-high strength steel sheets. Procedia Manufacturing (pp. 1354–1359). Amsterdam: Elsevier. Abe, Y., Saito, T., Mori, K.-I., & Kato, T. (2018). Mechanical clinching with dies for control of metal flow of ultra-high-strength steel and high-strength steel sheets. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 232, 644–649. https://doi.org/10.1177/0954405416683429 Behrens, B. A., Rolfes, R., Vucetic, M., et al. (2014). Material characterization for FEA of the clinching process of short fiber reinforced thermoplastics with an aluminum sheet. Advances in Materials Research, 966–967, 557–568. https://doi.org/10.4028/www.scientific.net/AMR.966-967.557 Lambiase, F. (2015). Joinability of different thermoplastic polymers with aluminium AA6082 sheets by mechanical clinching. International Journal of Advanced Manufacturing Technology, 80, 1995–2006. https://doi.org/10.1007/s00170-015-7192-1 Gude, M., Vogel, C., & Gröger, B. (2019). Simulation-aided development of a robust thermoclinching joining process for hybrid structures with textile reinforced thermoplastic composites and metallic components. Materwiss Werksttech, 50, 1027–1038. https://doi.org/10.1002/mawe.201900036 Salamati, M., Soltanpour, M., Fazli, A., & Zajkani, A. (2019). Processing and tooling considerations in joining by forming technologies; part A—mechanical joining. International Journal of Advanced Manufacturing Technology, 101, 261–315. https://doi.org/10.1007/s00170-018-2823-y Wang, J., Yu, Y., Fu, C., et al. (2020). Experimental investigation of clinching CFRP/aluminum alloy sheet with prepreg sandwich structure. Journal of Materials Processing Technology, 277, 116422. https://doi.org/10.1016/j.jmatprotec.2019.116422 Lambiase, F., & Di Ilio, A. (2015). Mechanical clinching of metal-polymer joints. Journal of Materials Processing Technology, 215, 12–19. https://doi.org/10.1016/j.jmatprotec.2014.08.006 Gude, M., Hufenbach, W., Kupfer, R., et al. (2015). Development of novel form-locked joints for textile reinforced thermoplastices and metallic components. Journal of Materials Processing Technology, 216, 140–145. https://doi.org/10.1016/j.jmatprotec.2014.09.007 Lambiase, F., & Ko, D. C. (2016). Feasibility of mechanical clinching for joining aluminum AA6082-T6 and carbon fiber reinforced polymer sheets. Materials and Design, 107, 341–352. https://doi.org/10.1016/j.matdes.2016.06.061 Lambiase, F., Durante, M., & Di Ilio, A. (2016). Fast joining of aluminum sheets with Glass Fiber Reinforced Polymer (GFRP) by mechanical clinching. Journal of Materials Processing Technology, 236, 241–251. https://doi.org/10.1016/j.jmatprotec.2016.04.030 Lambiase, F., & Ko, D. C. (2017). Two-steps clinching of aluminum and carbon fiber reinforced polymer sheets. Composite Structures, 164, 180–188. https://doi.org/10.1016/j.compstruct.2016.12.072 Gude, M., Freund, A., Vogel, C., & Kupfer, R. (2017). Simulation of a novel joining process for fiber-reinforced thermoplastic composites and metallic components. Mechanics of Composite Materials, 52, 733–740. https://doi.org/10.1007/s11029-017-9623-6 Pramanik, A., Basak, A. K., Dong, Y., et al. (2017). Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys – A review. Composites. Part A, Applied Science and Manufacturing, 101, 1–29. Lin, P.-C., Lin, J.-W., & Li, G.-X. (2018). Clinching process for aluminum alloy and carbon fiber-reinforced thermoplastic sheets. International Journal of Advanced Manufacturing Technology, 97, 529–541. https://doi.org/10.1007/s00170-018-1960-7 He, X. (2010). Recent development in finite element analysis of clinched joints. International Journal of Advanced Manufacturing Technology, 48, 607–612. https://doi.org/10.1007/s00170-009-2306-2 Eshtayeh, M. M., & Hrairi, M. (2016). Recent and future development of the application of finite element analysis in clinching process. International Journal of Advanced Manufacturing Technology, 84, 2589–2608. Eshtayeh, M. M., Hrairi, M., & Mohiuddin, A. K. M. (2016). Clinching process for joining dissimilar materials: State of the art. International Journal of Advanced Manufacturing Technology, 82, 179–195. https://doi.org/10.1007/s00170-015-7363-0 Mori, K. I., Bay, N., Fratini, L., et al. (2013). Joining by plastic deformation. CIRP Ann - Manufacturing Technology, 62, 673–694. https://doi.org/10.1016/j.cirp.2013.05.004 Dean, A., & Rolfes, R. (2018). FE modeling and simulation framework for the forming of hybrid metal-composites clinching joints. Thin-Walled Structuring, 133, 134–140. https://doi.org/10.1016/j.tws.2018.09.034 Lambiase, F. (2013). Influence of process parameters in mechanical clinching with extensible dies. International Journal of Advanced Manufacturing Technology, 66, 2123–2131. https://doi.org/10.1007/s00170-012-4486-4 Eshteyah, M., Hrairi, M., Dawood, M. S., & Mohiuddin, A. K. M. (2015). Finite element modeling of clinching process for joining dissimilar materials. Advances in Materials Research, 1115, 109–112. https://doi.org/10.4028/www.scientific.net/AMR.1115.109 He, X., Zhao, L., Yang, H., et al. (2014). Investigations of strength and energy absorption of clinched joints. Computational Materials Science, 94, 58–65. https://doi.org/10.1016/j.commatsci.2014.01.056 Zhao, L., He, X. C., & Lu, Y. (2014). Research of mechanical behavior for rounded and rectangular clinched joint. Advances in Materials Research, 1035, 144–148. https://doi.org/10.4028/www.scientific.net/AMR.1035.144 Jagtap, K. R., Ghorpade, S. Y., & Chopade, S. E. (2017). Finite Element Analysis of Mechanical Clinching Process. Materials Today: Proceedings (pp. 8104–8110). Amsterdam: Elsevier. Varis, J., & Lepistö, J. (2003). A simple testing-based procedure and simulation of the clinching process using finite element analysis for establishing clinching parameters. Thin-Walled Structuring, 41, 691–709. https://doi.org/10.1016/S0263-8231(03)00026-0 Lambiase, F., & Di Ilio, A. (2014). An experimental study on clinched joints realized with different dies. Thin-Walled Structuring, 85, 71–80. https://doi.org/10.1016/j.tws.2014.08.004 Zheng, J. C., He, X. C., Xu, J. N., et al. (2012). Finite element analysis of energy saving jointing method base on energy materials: clinching. Advances in Materials Research, 577, 9–12. https://doi.org/10.4028/www.scientific.net/AMR.577.9 He, X., Liu, F., Xing, B., et al. (2014). Numerical and experimental investigations of extensible die clinching. International Journal of Advanced Manufacturing Technology, 74, 1229–1236. https://doi.org/10.1007/s00170-014-6078-y Liu, F. L., He, X. C., & Zhao, L. (2014). A performance study of clinched joints with different material. Advances in Materials Research, 887–888, 1265–1268. https://doi.org/10.4028/www.scientific.net/AMR.887-888.1265 Cumin, J., Stoi, A., Duspara, M., & Samardi, I. (2019). FEM numerical simulations of the mechanical clinching process of HC260y steel. Tehnicki Vjesnik, 26, 49–55. https://doi.org/10.17559/TV-20170529143820 Lee, C.-J., Kim, J.-Y., Lee, S.-K., et al. (2010). Parametric study on mechanical clinching process for joining aluminum alloy and high-strength steel sheets. Journal of Mechanical Science and Technology, 24, 123–126. https://doi.org/10.1007/s12206-009-1118-5 Abe, Y., Kato, T., & Mori, K. (2007). Joining of aluminium alloy and mild steel sheets using mechanical clinching. Materials Science Forum, 561–565, 1043–1046. https://doi.org/10.4028/www.scientific.net/MSF.561-565.1043 Song, Y., Yang, L., Zhu, G., et al. (2019). Numerical and experimental study on failure behavior of steel-aluminium mechanical clinched joints under multiple test conditions. International Journal of Light Materials Manufacturing, 2, 72–79. https://doi.org/10.1016/j.ijlmm.2018.12.005 Kaðèák, L., Spiðák, E., Kubík, R., & Mucha, J. (2017). Finite element calculation of clinching with rigid die of three steel sheets. Strength of Materials, 49, 488–499. https://doi.org/10.1007/s11223-017-9892-2 Zhang, Y., He, X. C., & Liu, F. L. (2015). Study on the property of clinched joint in similar-dissimilar sheets about titanium alloy. Applied Mechanics and Materials, 723, 888–891. https://doi.org/10.4028/www.scientific.net/AMM.723.888 Yang, H. Y., He, X. C., Zeng, K., & Ding, Y. F. (2013). Numerical simulation of clinching process in copper alloy sheets. Advances in Materials Research, 753–755, 439–442. https://doi.org/10.4028/www.scientific.net/AMR.753-755.439 Dean, A., Rolfes, R., Grbic, N., et al. (2019). A FEM-based virtual test-rig for hybrid metal-composites clinching joints. Materwiss Werksttech, 50, 973–986. https://doi.org/10.1002/mawe.201800198 Drossel, W. G., Falk, T., Israel, M., & Jesche, F. (2014). Unerring planning of clinching processes through the use of mathematical methods. Key Engineering Materials, 611–612, 1437–1444. https://doi.org/10.4028/www.scientific.net/KEM.611-612.1437 Mucha, J. (2011). The analysis of lock forming mechanism in the clinching joint. Materials and Design, 32, 4943–4954. https://doi.org/10.1016/j.matdes.2011.05.045 de Paula, A. A., Aguilar, M. T. P., Pertence, A. E. M., & Cetlin, P. R. (2007). Finite element simulations of the clinch joining of metallic sheets. Journal of Materials Processing Technology, 182, 352–357. https://doi.org/10.1016/j.jmatprotec.2006.08.014 Abe, Y., Kishimoto, M., Kato, T., & Mori, K. (2009). Joining of hot-dip coated steel sheets by mechanical clinching. International Journal of Material Forming, 2, 291–294. https://doi.org/10.1007/s12289-009-0446-4 Atia, M. K. S., & Jain, M. K. (2018). Finite element analysis of material flow in die-less clinching process and joint strength assessment. Thin-Walled Structuring, 127, 500–515. https://doi.org/10.1016/j.tws.2018.03.001 Lambiase, F., & Di Ilio, A. (2013). Finite element analysis of material flow in mechanical clinching with extensible dies. Journal of Materials Engineering and Performance, 22, 1629–1636. https://doi.org/10.1007/s11665-012-0451-5 Lambiase, F. (2015). Clinch joining of heat-treatable aluminum AA6082-T6 alloy under warm conditions. Journal of Materials Processing Technology, 225, 421–432. https://doi.org/10.1016/j.jmatprotec.2015.06.022 Wang, X., Li, X., Shen, Z., et al. (2018). Finite element simulation on investigations, modeling, and multiobjective optimization for clinch joining process design accounting for process parameters and design constraints. International Journal of Advanced Manufacturing Technology, 96, 3481–3501. https://doi.org/10.1007/s00170-018-1708-4 Coppieters, S., Cooreman, S., Lava, P., et al. (2011). Reproducing the experimental pull-out and shear strength of clinched sheet metal connections using FEA. International Journal of Material Forming, 4, 429–440. https://doi.org/10.1007/s12289-010-1023-6 Jayasekara, V., Min, K. H., Noh, J. H., et al. (2010). Rigid-plastic and elastic-plastic finite element analysis on the clinching joint process of thin metal sheets. Metals and Materials International, 16, 339–347. https://doi.org/10.1007/s12540-010-0427-7 Malý, P., Lopot, F., & Sojka, J. (2017). FEM model and experimental measurement of clinched joint. IOP Conference Serious Material Science Engineering, 179, 012051. https://doi.org/10.1088/1757-899X/179/1/012051 Eshtayeh, M., Hrairi, M., & Dawood, M. S. (2017). Numerical investigation of springback in mechanical clinching process. International Journal of Engineering Materials Manufacturing, 2, 86–93. https://doi.org/10.26776/ijemm.02.04.2017.02 Saberi, S., Enzinger, N., Vallant, R., et al. (2008). Influence of plastic anisotropy on the mechanical behavior of clinched joint of different coated thin steel sheets. International Journal of Material Forming, 1, 273–276. https://doi.org/10.1007/s12289-008-0349-9 Han, S. L., Wu, Y. W., & Zeng, Q. L. (2012). Numerical simulation for heat transfer process of clinching with magnesium alloys. Advances in Materials Research, 472–475, 1995–1999. https://doi.org/10.4028/www.scientific.net/AMR.472-475.1995 Lee, C. J., Kim, J. Y., Lee, S. K., et al. (2010). Design of mechanical clinching tools for joining of aluminium alloy sheets. Materials and Design, 31, 1854–1861. https://doi.org/10.1016/j.matdes.2009.10.064 Pirondi, A., & Moroni, F. (2009). Clinch-bonded and rivet-bonded hybrid joints: application of damage models for simulation of forming and failure. Journal of Adhesion Science and Technology, 23, 1547–1574. https://doi.org/10.1163/156856109X433063 Borsellino, C., Di Bella, G., & Ruisi, V. F. (2007). Study of new joining technique: flat clinching. Key Engineering Materials, 344, 685–692. https://doi.org/10.4028/www.scientific.net/KEM.344.685 Chen, C., Fan, S., Han, X., et al. (2019). Experimental research on the compressed joints with different geometrical parameters. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 233, 174–181. https://doi.org/10.1177/0954405417711735 Chen, C., Fan, S., Han, X., et al. (2017). Experimental study on the height-reduced joints to increase the cross-tensile strength. International Journal of Advanced Manufacturing Technology, 91, 2655–2662. https://doi.org/10.1007/s00170-016-9939-8 Chen, C., Han, X., Zhao, S., et al. (2017). Comparative study on two compressing methods of clinched joints with dissimilar aluminum alloy sheets. International Journal of Advanced Manufacturing Technology, 93, 1929–1937. https://doi.org/10.1007/s00170-017-0650-1 Chen, C., Han, X., Zhao, S., et al. (2018). Influence of sheet thickness on mechanical clinch–compress joining technology. Proceedings of Institutional Mechanic Engineering Part E Journal of Process Mechanic Engineering, 232, 662–673. https://doi.org/10.1177/0954408917735717 Chen, C., Li, Y., Zhai, Z., et al. (2019). Comparative investigation of three different reforming processes for clinched joint to increase joining strength. Journal of Manufacturing Processes, 45, 83–91. https://doi.org/10.1016/j.jmapro.2019.06.009 Chen, C., Li, Y., Zhang, H., et al. (2020). Investigation of a renovating process for failure clinched joint to join thin-walled structures. Thin-Walled Structuring, 151, 106686. https://doi.org/10.1016/j.tws.2020.106686 Chen, C., Ran, X., Pan, Q., et al. (2020). Research on the mechanical properties of repaired clinched joints with different forces. Thin-Walled Structuring, 152, 106752. https://doi.org/10.1016/j.tws.2020.106752 Chen, C., Zhao, S., Cui, M., et al. (2017). Numerical and experimental investigations of the reshaped joints with and without a rivet. International Journal of Advanced Manufacturing Technology, 88, 2039–2051. https://doi.org/10.1007/s00170-016-8889-5 Chen, C., Zhao, S., Cui, M., et al. (2016). Mechanical properties of the two-steps clinched joint with a clinch-rivet. Journal of Materials Processing Technology, 237, 361–370. https://doi.org/10.1016/j.jmatprotec.2016.06.024 Chen, C., Zhao, S., Cui, M., et al. (2016). An experimental study on the compressing process for joining Al6061 sheets. Thin-Walled Structuring, 108, 56–63. https://doi.org/10.1016/j.tws.2016.08.007 Chen, C., Zhao, S., Cui, M., et al. (2018). Comparative investigation of auxiliary processes for increasing the strength of clinched joints. Proceedings of Institutional Mechanic Engineering Part E Journal of Process Mechanic Engineering, 232, 165–172. https://doi.org/10.1177/0954408916686998 Chen, C., Zhao, S., Cui, M., et al. (2017). Effects of geometrical parameters on the strength and energy absorption of the height-reduced joint. International Journal of Advanced Manufacturing Technology, 90, 3533–3541. https://doi.org/10.1007/s00170-016-9619-8 Chen, C., Zhao, S., Han, X., et al. (2016). Investigation of mechanical behavior of the reshaped joints realized with different reshaping forces. Thin-Walled Structuring, 107, 266–273. https://doi.org/10.1016/j.tws.2016.06.020 Chen, C., Zhao, S., Han, X., et al. (2017). Investigation of the height-reducing method for clinched joint with AL5052 and AL6061. International Journal of Advanced Manufacturing Technology, 89, 2269–2276. https://doi.org/10.1007/s00170-016-9266-0 Chen, C., Zhao, S., Han, X., et al. (2016). Optimization of a reshaping rivet to reduce the protrusion height and increase the strength of clinched joints. Journal of Materials Processing Technology, 234, 1–9. https://doi.org/10.1016/j.jmatprotec.2016.03.006 Chen, C., Zhao, S., Han, X., et al. (2017). Experimental investigation of the mechanical reshaping process for joining aluminum alloy sheets with different thicknesses. Journal of Manufacturing Processes, 26, 105–112. https://doi.org/10.1016/j.jmapro.2017.01.015 Chen, C., Zhao, S., Han, X., et al. (2017). Investigation of flat clinching process combined with material forming technology for aluminum alloy. Materials (Basel), 10, 1433. https://doi.org/10.3390/ma10121433 Chen, C., Zhao, S., Han, X., et al. (2017). Experimental investigation on the joining of aluminum alloy sheets using improved clinching process. Materials (Basel), 10, 887. https://doi.org/10.3390/ma10080887 Chen, C., Ishida, T., Wang, Y., et al. (2018). Numerical and experimental investigations of the two-step clinching process with a bumped die. Journal of Advanced Mechanic Design System of Manufacturing, 12, JAMDSM0109. https://doi.org/10.1299/jamdsm.2018jamdsm0109 He, X., Gu, F., & Ball, A. (2013). Fatigue behaviour of fastening joints of sheet materials and finite element analysis. Advances in Mechanical Engineering, 5, 658219. https://doi.org/10.1155/2013/658219 Kim, H. K. (2013). Fatigue strength evaluation of the clinched lap joints of a cold rolled mild steel sheet. Journal of Materials Engineering and Performance, 22, 294–299. https://doi.org/10.1007/s11665-012-0232-1 Carboni, M., Beretta, S., & Monno, M. (2006). Fatigue behaviour of tensile-shear loaded clinched joints. Engineering Fracture Mechanics, 73, 178–190. https://doi.org/10.1016/j.engfracmech.2005.04.004 Neugebauer, R., Kraus, C., & Dietrich, S. (2008). Advances in mechanical joining of magnesium. CIRP Annals, 57, 283–286. https://doi.org/10.1016/j.cirp.2008.03.025 Sabra Atia, M. K., & Jain, M. K. (2017). Die-less clinching process and joint strength of AA7075 aluminum joints. Thin-Walled Structuring, 120, 421–431. https://doi.org/10.1016/j.tws.2017.06.021 Sabra Atia, M. K., & Jain, M. K. (2018). A parametric study of FE modeling of die-less clinching of AA7075 aluminum sheets. Thin-Walled Structuring, 132, 717–728. https://doi.org/10.1016/j.tws.2018.09.001 Atia, M. K. S., & Jain, M. K. (2020). A novel approach to hot die-less clinching process for high strength AA7075-T6 sheets. Proceedings of the Institution of Mechanical Engineers Part C Journal of Machine Engineering Science, 234, 3809–3825. https://doi.org/10.1177/0954406220917406 Lüder, S., Härtel, S., Binotsch, C., & Awiszus, B. (2014). Influence of the moisture content on flat-clinch connection of wood materials and aluminium. Journal of Materials Processing Technology, 214, 2069–2074. https://doi.org/10.1016/j.jmatprotec.2014.01.010 Gerstmann, T., & Awiszus, B. (2020). Hybrid joining: Numerical process development of flat-clinch-bonding. Journal of Materials Processing Technology, 277, 116421. https://doi.org/10.1016/j.jmatprotec.2019.116421 Gerstmann, T., & Awiszus, B. (2014). Recent developments in flat-clinching. Computational Materials Science, 81, 39–44. https://doi.org/10.1016/j.commatsci.2013.07.013 Lee, S. H., Lee, C. J., Lee, K. H., et al. (2014). Influence of tool shape on hole clinching for carbon fiber-reinforced plastic and SPRC440. Advances in Mechanical Engineering. https://doi.org/10.1155/2014/810864 Liu, Y., Zhuang, W., & Wu, S. (2020). Damage to carbon fibre reinforced polymers (CFRP) in hole-clinched joints with aluminium alloy and CFRP. Composite Structures, 234, 111710. https://doi.org/10.1016/j.compstruct.2019.111710 Chen, L. W., & Cai, M. J. (2018). Development of a hot stamping clinching tool. Journal of Manufacturing Processes, 34, 650–658. https://doi.org/10.1016/j.jmapro.2018.06.022 Wang, X., Ji, Z., Wang, J., et al. (2018). An experimental and numerical study on laser shock clinching for joining copper foil and perforated stainless steel sheet. Journal of Materials Processing Technology, 258, 155–164. https://doi.org/10.1016/j.jmatprotec.2018.03.025 Wang, X., Li, X., Li, C., et al. (2018). Laser shock micro clinching of Al/Cu. Journal of Materials Processing Technology, 258, 200–210. https://doi.org/10.1016/j.jmatprotec.2018.04.005 Wang, X., Ji, Z., Liu, R., & Zheng, C. (2018). Making interlock by laser shock forming. Optics & Laser Technology, 107, 331–336. https://doi.org/10.1016/j.optlastec.2018.06.011 Hiller, M., & Volk, W. (2015). Joining aluminium alloy and mild steel sheets by roller clinching. Applied Mechanics and Materials, 794, 295–303. https://doi.org/10.4028/www.scientific.net/AMM.794.295 Hiller, M., Vitzthum, S., Hacker, M., et al. (2018). Numerical analysis of the scalability of roller clinching processes. Key Engineering Materials, 767, 377–385. https://doi.org/10.4028/www.scientific.net/KEM.767.377 Lin, P. C., Lo, S. M., & Wu, S. P. (2018). Fatigue life estimations of alclad AA2024-T3 friction stir clinch joints. International Journal of Fatigue, 107, 13–26. https://doi.org/10.1016/j.ijfatigue.2017.10.011 Paidar, M., Ghavamian, S., Ojo, O. O., et al. (2019). Modified friction stir clinching of dissimilar AA2024-T3 to AA7075-T6: Effect of tool rotational speed and penetration depth. Journal of Manufacturing Processes, 47, 157–171. https://doi.org/10.1016/j.jmapro.2019.09.028 Paidar, M., Ojo, O. O., Moghanian, A., et al. (2019). Modified friction stir clinching with protuberance-keyhole levelling: A process for production of welds with high strength. Journal of Manufacturing Processes, 41, 177–187. https://doi.org/10.1016/j.jmapro.2019.03.030 Lambiase, F., & Di Ilio, A. (2016). Damage analysis in mechanical clinching: Experimental and numerical study. Journal of Materials Processing Technology, 230, 109–120. https://doi.org/10.1016/j.jmatprotec.2015.11.013 Lambiase, F., & Di Ilio, A. (2013). Optimization of the clinching tools by means of integrated FE modeling and artificial intelligence techniques. Procedia CIRP, 12, 163–168. https://doi.org/10.1016/j.procir.2013.09.029 Dean, A., Sahraee, S., Reinoso, J., & Rolfes, R. (2016). Finite deformation model for short fiber reinforced composites: Application to hybrid metal-composite clinching joints. Composite Structures, 151, 162–171. https://doi.org/10.1016/j.compstruct.2016.02.045 Roux, E., & Bouchard, P. O. (2013). Kriging metamodel global optimization of clinching joining processes accounting for ductile damage. Journal of Materials Processing Technology, 213, 1038–1047. https://doi.org/10.1016/j.jmatprotec.2013.01.018 Zhao, S. D., Xu, F., Guo, J. H., & Han, X. L. (2014). Experimental and numerical research for the failure behavior of the clinched joint using modified Rousselier model. Journal of Materials Processing Technology, 214, 2134–2145. https://doi.org/10.1016/j.jmatprotec.2014.03.013 Breda, A., Coppieters, S., & Debruyne, D. (2017). Equivalent modelling strategy for a clinched joint using a simple calibration method. Thin-Walled Structuring, 113, 1–12. https://doi.org/10.1016/j.tws.2016.12.002 Ali, B., & Benabderrahmane, B. (2017). Finite element simulation of the hybrid clinch joining. International Journal of Advanced Manufacturing Technology, 89, 439–449. https://doi.org/10.1007/s00170-016-9094-2 Berezhnoi, D. V., & Shamim, M. R. (2017). Numerical Investigation of Clinch Connection Manufacturing Process. Procedia Engineering (pp. 1056–1062). Amsterdam: Elsevier. Hamel, V., Roelandt, J. M., Gacel, J. N., & Schmit, F. (2000). Finite element modeling of clinch forming with automatic remeshing. Computers & Structures, 77, 185–200. https://doi.org/10.1016/S0045-7949(99)00207-2 Coppieters, S., Lava, P., Baes, S., et al. (2012). Analytical method to predict the pull-out strength of clinched connections. Thin-Walled Structuring, 52, 42–52. https://doi.org/10.1016/j.tws.2011.12.002 Behrens, B. A., Bouguecha, A., Vucetic, M., et al. (2015). FEA-based optimisation of a clinching process with a closed single-part die aimed at damage minimization in CR240BH-AlSi10MnMg joints. Key Engineering Materials, 651–653, 1487–1492. https://doi.org/10.4028/www.scientific.net/KEM.651-653.1487 Breda, A., Coppieters, S., Kuwabara, T., & Debruyne, D. (2019). The effect of plastic anisotropy on the calibration of an equivalent model for clinched connections. Thin-Walled Structuring, 145, 106360. https://doi.org/10.1016/j.tws.2019.106360