The Spatiotemporal Patterns of Community Vulnerability in the U.S. Mobile Bay from 2000–2020

Hemal Dey1, Wanyun Shao1,2, Shufen Pan3, Hanqin Tian4
1Department of Geography, The University of Alabama, Tuscaloosa, USA
2The Alabama Water Institute, The University of Alabama, Tuscaloosa, USA
3The GIS and Remote Sensing Laboratory, the School of Forestry and Wildlife Sciences, Auburn University, Auburn, USA
4Department of Earth and Environmental Sciences, Schiller Institute, Boston College, Chestnut Hill, USA

Tóm tắt

The coastal community is confronted with heightened risks posed by climate change. Mobile Bay in the United States is a large estuarine system along the Gulf of Mexico (GOM) coast, providing critical ecosystem services for the nation. This region is however subject to increased urbanization and uncertain impacts of climate change. To ensure sustainability of this important ecosystem, it is imperative to examine the changing spatial patterns of community vulnerability to environmental changes in this region. Using data from the U.S. Census of multiple years, we investigate the changing spatial patterns of social vulnerability at the census block group level in Mobile Bay consisting of Mobile County and Baldwin County over the past 20 years (2000 – 2020). Additionally, we utilize hotspot and cluster analyses to formalize the observations of the spatiotemporal changes. Further, we examine how land use and land cover (LULC) changes co-occur with social vulnerability changes across Mobile Bay. We identify several hotspots where land cover has been converted to urban land and social vulnerability has increased. The investigation of the spatial patterns over a relatively long period helps to deepen the insight into the dynamic spatiotemporal changes of social and environmental vulnerability. This insight can better inform future plans to cope with climate change and ensure sustainability. Specifically, hotspots that have undergone urbanization and increased social vulnerability demand special attention from policy makers for future risk mitigation and disaster planning.

Tài liệu tham khảo

Abdelhafez, M. A., Ellingwood, B., & Mahmoud, H. (2021). Vulnerability of seaports to hurricanes and sea level rise in a changing climate: A case study for mobile, AL. Coastal Engineering, 167, 103884. https://doi.org/10.1016/j.coastaleng.2021.103884 Abson, D. J., Dougill, A. J., & Stringer, L. C. (2012). Using principal component analysis for information-rich socio-ecological vulnerability mapping in Southern Africa. Applied Geography, 35(1–2), 515–524. https://doi.org/10.1016/j.apgeog.2012.08.004 Aksha, S. K., Juran, L., Resler, L. M., & Zhang, Y. (2019). An analysis of social vulnerability to natural hazards in Nepal using a modified social vulnerability index. International Journal of Disaster Risk Science, 10(1), 103–116. https://doi.org/10.1007/s13753-018-0192-7 Alarcon, V. J., & McAnally, W. H. (2012). A strategy for estimating nutrient concentrations using remote sensing datasets and hydrological modelling. International Journal of Agricultural and Environmental Information Systems, 3(1). https://doi.org/10.4018/jaeis.2012010101 Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27(2), 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x Areendran, G., Rao, P., Raj, K., Mazumdar, S., & Puri, K. (2013). Land use/land cover change dynamics analysis in mining areas of Singrauli district in Madhya Pradesh, India. Tropical Ecology, 54(2), 239–250. https://doi.org/10.1016/j.ejrs.2018.01.002 Beroya-Eitner, M. A. (2016). Ecological vulnerability indicators. Ecological Indicators, 60, 329–334. https://doi.org/10.1016/j.ecolind.2015.07.001 Chen, Y., Ye, Z., Chen, R., & Liu, Z. (2021). A GIS-based approach for flood risk zoning by combining social vulnerability and flood susceptibility: A case study of Nanjing, China. International Journal of Environmental Research and Public Health, 18(21), 11597. Cutter, S., Boruff, B., & Shirley, W. (2003). Social vulnerability to environmental hazards. Social Science Quarterly, 84(2), 242–261. https://doi.org/10.1111/1540-6237.8402002 Danielson, J. J., Brock, J. C., Howard, D. M., Gesch, D. B., Bonisteel-Cormier, J. M., & Travers, L. J. (2013). Topobathymetric model of Mobile Bay, Alabama. US Geological Survey Data Series, 769(6). https://doi.org/10.3133/ds769 de Sherbinin, A., & Bardy, G. (2015). Social vulnerability to floods in two coastal megacities: New York City and Mumbai. Vienna yearbook of population research, 131–165. Ellis, J. T., Spruce, J. P., Swann, R. A., Smoot, J. C., & Hilbert, K. W. (2011). An assessment of coastal land-use and land-cover change from 1974–2008 in the vicinity of Mobile Bay, Alabama. Journal of Coastal Conservation, 15(1), 139–149. https://doi.org/10.1007/s11852-010-0127-y Emrich, C. T., & Cutter, S. L. (2011). Social vulnerability to climate sensitive hazards in the southern United State. Weather, Climate, and Society., 3(3), 193–208. https://doi.org/10.1175/2011WCAS1092.1 Estes Jr, M. G., Al‐Hamdan, M. Z., Ellis, J. T., Judd, C., Woodruff, D., Thom, R. M., ..., & Herder, T. (2015). A modeling system to assess land cover land use change effects on SAV habitat in the Mobile Bay estuary. JAWRA Journal of the American Water Resources Association, 51(2), 513–536. https://doi.org/10.1111/jawr.12263 Flanagan, B. E., Gregory, E. W., Hallisey, E. J., Heitgerd, J. L., & Lewis, B. (2011). A social vulnerability index for disaster management. Journal of Homeland Security and Emergency Management, 8(1), 3. https://doi.org/10.2202/1547-7355.1792 Fleming, E., Payne, J., Sweet, W., Craghan, M., Haines, J., Hart, J. F., Stiller, H., & Sutton-Grier, A. (2018). Coastal effects. In D. R. Reidmiller, C. W. Avery, D. R. Easterling, K. E. Kunkel, K. L. M. Lewis, T. K. Maycock, & B. C. Stewart (Eds.), Impacts, risks, and adaptation in the United States: Fourth National Climate Assessment, Volume II (pp. 322–352). U.S. Global Change Research Program. https://doi.org/10.7930/NCA4.2018.CH8 Folke, C. (2006). Resilience: The emergence of a perspective for social–ecological systems analyses. Global Environmental Change, 16(3), 253–267. https://doi.org/10.1016/j.gloenvcha.2006.04.002 Forman, E. H., & Gass, S. I. (2001). The analytic hierarchy process—an exposition. Operations Research, 49(4), 469–486. https://doi.org/10.1287/opre.49.4.469.11231 Frigerio, I., Carnelli, F., Cabinio, M., & De Amicis, M. (2018). Spatiotemporal pattern of social vulnerability in Italy. International Journal of Disaster Risk Science, 9, 249–262. https://doi.org/10.1007/s13753-018-0168-7 Frigerio, I., Ventura, S., Strigaro, D., Mattavelli, M., De Amicis, M., Mugnano, S., & Boffi, M. (2016). A GIS-based approach to identify the spatial variability of social vulnerability to seismic hazard in Italy. Applied Geography, 74, 12–22. https://doi.org/10.1016/j.apgeog.2016.06.014 Gang, C., Pan, S., Tian, H., Wang, Z., Xu, R., Bian, Z., Pan, N., Yao, Y., & Shi, H. (2020). Satellite observations of forest resilience to hurricanes along the northern Gulf of Mexico. Forest Ecology and Management, 472, 118243. https://doi.org/10.1016/j.foreco.2020.118243 IPCC. (2022). Summary for Policymakers [H.-O. Pörtner, D. C. Roberts, E. S. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem (eds.)]. In H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, & B. Rama (Eds.), Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 3–33). Cambridge University Press. https://doi.org/10.1017/9781009325844.001 Lehrter, J. C. (2008). Regulation of eutrophication susceptibility in oligohaline regions of a northern Gulf of Mexico estuary, Mobile Bay, Alabama. Marine Pollution Bulletin, 56(8), 1446–1460. Li, Y., Zhang, X., Zhao, X., Ma, S., Cao, H., & Cao, J. (2016). Assessing spatial vulnerability from rapid urbanization to inform coastal urban regional planning. Ocean & Coastal Management, 123, 53–65. https://doi.org/10.1016/j.ocecoaman.2016.01.010 Lin, N., & Emanuel, K. (2016). Grey swan tropical cyclones. Nature Climate Change, 6(1), 106–111. https://doi.org/10.1038/nclimate2777 Lin, N., Kopp, R. E., Horton, B. P., & Donnelly, J. P. (2016). Hurricane Sandy’s flood frequency increasing from year 1800 to 2100. Proceedings of the National Academy of Sciences, 113(43), 12071–12075. https://doi.org/10.1073/pnas.1604386113 Marsooli, R., Lin, N., Emanuel, K., & Feng, K. (2019). Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns. Nature Communication., 10, 3785. https://doi.org/10.1038/s41467-019-11755-z Mobile Bay National Estuary Program (MBNEP). (2008). State of Mobile Bay. https://www.mobilebaynep.com/assets/pdf/State-of-Mobile-Bay-Final.pdf. Accessed on June 1, 2023. Pan, S., Bian, Z., Tian, H., Yao, Y., Najjar, R. G., Friedrichs, M. A., Hofmann, E. E., Xu, R., & Zhang, B. (2021). Impacts of multiple environmental changes on long-term nitrogen loading from the Chesapeake Bay watershed. Journal of Geophysical Research: Biogeosciences, 126(5), e2020JG005826. https://doi.org/10.1029/2020JG005826 Pennock, J. R., Boyer, J. N., Herrera-Silveira, J. A., Iverson, R. L., Whitledge, T., Mortazavi, B., et al. (1999). Nutrient behavior and phytoplankton production in Gulf of Mexico estuaries. Biogeochem. Gulf of Mexico Estuaries, pp. 109–162 Reckien, D. (2018). What is in an index? Construction method, data metric, and weighting scheme determine the outcome of composite social vulnerability indices in New York City. Regional Environmental Change, 18, 1439–1451. https://doi.org/10.1007/s10113-017-1273-7 Roder, G., Sofia, G., Wu, Z., & Tarolli, P. (2017). Assessment of social vulnerability to floods in the floodplain of northern Italy. Weather, Climate, and Society, 9(4), 717–737. https://doi.org/10.1175/WCAS-D-16-0090.1 Rufat, S., Tate, E., Burton, C. G., & Maroof, A. S. (2015). Social vulnerability to floods: Review of case studies and implications for measurement. International Journal of Disaster Risk Reduction, 14, 470–486. https://doi.org/10.1016/j.ijdrr.2015.09.013 Schmidtlein, M. C., Deutsch, R. C., Piegorsch, W. W., & Cutter, S. L. (2008). A sensitivity analysis of the social vulnerability index. Risk Analysis: An International Journal, 28(4), 1099–1114. https://doi.org/10.1111/j.1539-6924.2008.01072.x Shao, W., Jackson, N. P., Ha, H., & Winemiller, T. (2020). Assessing community vulnerability to floods and hurricanes along the Gulf Coast of the United States. Disasters, 44(3), 518–547. https://doi.org/10.1111/disa.12383 Shao, W., Keim, B. D., Xian, S., & O’Connor, R. (2019). Flood hazards and perceptions – A comparative study of two cities in Alabama. Journal of Hydrology, 569, 546–555. https://doi.org/10.1016/j.jhydrol.2018.11.070 Trepanier, J. C., Ellis, K. N., & Tucker, C. S. (2015). Hurricane risk variability along the gulf of Mexico coastline. PLoS ONE, 10(3), e0118196. https://doi.org/10.1371/journal.pone.0118196 Turner, B. L., Kasperson, R. E., Matson, P. A., et al. (2003). A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences, 100(14), 8074–8079. https://doi.org/10.1073/pnas.1231335100 Twisa, S., & Buchroithner, M. F. (2019). Land-use and land-cover (LULC) change detection in Wami River Basin, Tanzania. Land, 8(9), 136. https://doi.org/10.3390/land8090136 Wood, N. J., Burton, C. G., & Cutter, S. L. (2010). Community variations in social vulnerability to Cascadia-related tsunamis in the US Pacific Northwest. Natural Hazards, 52(2), 369–389. https://doi.org/10.1007/s11069-009-9376-1