The Spacelike-Characteristic Cauchy Problem of General Relativity in Low Regularity

Stefan Czimek1, Olivier Graf2
1Mathematisches Institut, Leipzig University, Leipzig, Germany
2Institut Fourier, Université Grenoble Alpes, Grenoble, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adams, R., Fournier, J.: In: Sobolev Spaces. Pure and Applied Mathematics, vol. 140, 2nd edn. Academic Press, Cambridge (2003)

An, X., Luk, J.: Trapped surfaces in vaccum arising from mild incoming radiation. Adv. Theo. Math. Phys. 21(1), 1–120 (2017)

Bartnik, R.: Existence of maximal surfaces in asymptotically flat spacetimes. Commun. Math. Phys. 94(2), 155–175 (1984)

Bruhat, Y.: Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non-linéaires. Acta Math. 88, 141–225 (1952)

Bruhat, Y.: Maximal submanifolds and submanifolds with constant mean extrinsic curvature of a Lorentzian manifold. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4(3), 361–376 (1976)

Bruhat, Y., Chruściel, P.T., Martin-Garcia, J.M.: The Cauchy problem on a characteristic cone for the Einstein equations in arbitrary dimensions. Ann. Henri Poincaré 12(3), 419–482 (2011)

Christodoulou, D.: The instability of naked singularities in the gravitational collapse of a scalar field. Ann. Math. 149, 183–217 (1999)

Christodoulou, D.: The Formation of Black Holes in General Relativity. EMS Monographs in Mathematics, 2009

Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the Minkowski Space. Princeton Mathematical Series, pp. 10–514. Princeton University Press, Princeton (1993)

Chruściel, P.T., Paetz, T.T.: The many ways of the characteristic Cauchy problem. Class. Quantum Gravity 29(14), 145006 (2012)

Chruściel, P.T., Paetz, T.T.: Characteristic initial data and smoothness of Scri. I. Framework and results. Ann. Henri Poincaré 16(9), 2131–2162 (2015)

Czimek, S.: An extension procedure for the constraint equations. Ann. PDE1 4(1), 122 (2018)

Czimek, S.: Boundary harmonic coordinates on manifolds with boundary in low regularity. Commun. Math. Phys. 371(3), 1131–1177 (2019)

Czimek, S.: The localised bounded $$L^2$$ curvature theorem. Commun. Math. Phys. 372(1), 71–90 (2019)

Czimek, S., Graf, O.: The canonical foliation on null hypersurfaces in low regularity. arXiv, 2019, 69 pp

Klainerman, S., Luk, J., Rodnianski, I.: A fully anisotropic mechanism for formation of trapped surfaces in vacuum. Invent. Math. 198(1), 1–26 (2014)

Klainerman, S., Rodnianski, I.: Causal geometry of Einstein-vacuum spacetimes with finite curvature flux. Invent. Math. 159(3), 437–529 (2005)

Klainerman, S., Rodnianski, I.: A geometric approach to the Littlewood–Paley theory. Geom. Funct. Anal. 16(1), 126–163 (2006)

Klainerman, S., Rodnianski, I.: Sharp trace theorems for null hypersurfaces on Einstein metrics with finite curvature flux. Geom. Funct. Anal. 16(1), 164–229 (2006)

Klainerman, S., Rodnianski, I.: On the breakdown criterion in general relativity. J. Am. Math. Soc. 23(2), 345–382 (2010)

Klainerman, S., Rodnianski, I.: On the formation of trapped surfaces. Acta Math. 208, 211–333 (2012)

Klainerman, S., Rodnianski, I., Szeftel, J.: The bounded $$L^2$$ curvature conjecture. Invent. Math. 202(1), 91–216 (2015)

Luk, J.: On the local existence for the characteristic initial value problem in general relativity. Int. Math. Res. Not. 20, 4625–4678 (2012)

Luk, J., Rodnianski, I.: Local propagation of impulsive gravitational waves. Commun. Pure Appl. Math. 68(4), 511–624 (2015)

Luk, J., Rodnianski, I.: Nonlinear interaction of impulsive gravitational waves for the vacuum Einstein equations. Camb. J. Math. 5(4), 435–570 (2017)

Penrose, R.: Gravitational Collapse: the Role of General Relativity. Rivista del Nuovo Cimento, Numero Speziale I, 252–276 (1969)

Petersen, P.: Convergence Theorems in Riemannian Geometry. Comparison Geometry, pp. 167–202. MSRI Publications, Cambridge (1997)

Petersen, P.: Riemannian Geometry. Graduate Texts in Mathematics, 3rd edn., pp. 18–499. Springer, Cham (2016)

Rendall, A.: Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations. Proc. R. Soc. Lond. Ser. A 427(1872), 221–239 (1990)

Shao, A.: New tensorial estimates in Besov spaces for time-dependent (2+1)-dimensional problems. J. Hyperbolic Differ. Equ. 11(4), 821–908 (2014)

Szeftel, J.: Parametrix for wave equations on a rough background I: regularity of the phase at initial time. arXiv:1204.1768, 2012, 145 pp

Szeftel, J.: Parametrix for wave equations on a rough background II: construction and control at initial time. arXiv:1204.1769, 2012, 84 pp

Szeftel, J.: Parametrix for wave equations on a rough background III: space-time regularity of the phase. Astérisque 401, 321 (2018)

Szeftel, J.: Parametrix for wave equations on a rough background IV: control of the error term. arXiv:1204.1771, 2012, 284 pp

Szeftel, J.: Sharp Strichartz estimates for the wave equation on a rough background. Annales Scientifiques de l’École Normale Supérieure 49(6), 1279–1309 (2016)

Wald, R.: General Relativity. University of Chicago Press, Chicago (1984)