The Southern Ocean carbon and climate observations and modeling (SOCCOM) project: A review
Tài liệu tham khảo
Abernathey, 2016, Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning, Nat. Geosci., 9, 596, 10.1038/ngeo2749
Anderson, 1994, Redfield ratios of remineralization determined by nutrient data analysis, Global Biogeochem. Cycles, 8, 65, 10.1029/93GB03318
Armour, 2016, Southern Ocean warming delayed by circumpolar upwelling and equatorward transport, Nat. Geosci., 9, 549, 10.1038/ngeo2731
Arrigo, 2012, Massive phytoplankton blooms under Arctic sea ice, Science, 336, 10.1126/science.1215065
Arrigo, 2008, Primary production in the Southern Ocean, 1997–2006, J. Geophys. Res. Oceans, 113, C08004, 10.1029/2007JC004551
Arrigo, 2017, Early spring phytoplankton dynamics in the Western Antarctic Peninsula, J. Geophys. Res. Oceans, 122, 9350, 10.1002/2017JC013281
Arteaga, 2018, Assessment of Export Efficiency Equations in the Southern Ocean Applied to Satellite-Based Net Primary Production, J. Geophys. Res. Oceans, 123, 2945, 10.1002/2018JC013787
Arteaga, 2019, Nutrient controls on export production in the Southern Ocean, Global Biogeochem. Cycles, 33, 942, 10.1029/2019GB006236
Arteaga, 2020, Seasonal modulation of phytoplankton biomass in the Southern Ocean, Nat. Commun., 11, 1, 10.1038/s41467-020-19157-2
Arteaga, 2022, Vertical structure in phytoplankton growth and productivity inferred from Biogeochemical-Argo floats and the carbon-based productivity model, Global Biogeochem. Cycles, 36, 10.1029/2022GB007389
Bakker, D.C., Pfeil, B., Landa, C.S., Metzl, N., O'brien, K.M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S.D. and Nakaoka, S.I., 2016. A multi-decade record of high-quality fCO 2 data in version 3 of the Surface Ocean CO 2 Atlas (SOCAT). Earth Syst. Sci. Data 8(2), pp.383-413. doi:10.5194/essd-8-383-2016.
Baldry, 2020, Subsurface chlorophyll-a maxima in the Southern Ocean, Front. Mar. Sci., 7, 671, 10.3389/fmars.2020.00671
Barker, 2011, Pressure sensor drifts in Argo and their impacts, J. Atmos. Oceanic Tech., 28, 1036, 10.1175/2011JTECHO831.1
Beadling, 2019, Assessing the quality of Southern Ocean circulation in CMIP5 AOGCM and Earth System Model simulations, J. Clim., 32, 5915, 10.1175/JCLI-D-19-0263.1
Beadling, 2020, Representation of Southern Ocean properties across coupled model intercomparison project generations: CMIP3 to CMIP6, J. Clim., 33, 6555, 10.1175/JCLI-D-19-0970.1
Bednaršek, 2012, Extensive dissolution of live pteropods in the Southern Ocean, Nat. Geosci., 5, 881, 10.1038/ngeo1635
Behrenfeld, 2018, Student’s tutorial on bloom hypotheses in the context of phytoplankton annual cycles, Glob. Change Biol., 24, 55, 10.1111/gcb.13858
Behrenfeld, 1997, Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 1, 10.4319/lo.1997.42.1.0001
Biogeochemical-Argo Planning Group, 2016. The scientific rationale, design and implementation plan for a Biogeochemical-Argo float array. https://doi.org/10.13155/46601.
Bisson, 2021, How are under ice phytoplankton related to sea ice in the Southern Ocean?, Geophys. Res. Lett., 48, 10.1029/2021GL095051
Bisson, 2019, Evaluating satellite estimates of particulate backscatter in the global open ocean using autonomous profiling floats, Opt. Express, 27, 30191, 10.1364/OE.27.030191
Bisson, 2021, Particulate backscattering in the global ocean: A comparison of independent assessments, Geophys. Res. Lett., 48, 10.1029/2020GL090909
Bittig, 2015, Tackling oxygen optode drift: Near-surface and in-air oxygen optode measurements on a float provide an accurate in situ reference, J. Atmos. Oceanic Tech., 32, 1536, 10.1175/JTECH-D-14-00162.1
Bittig, 2018, Oxygen optode sensors: principle, characterization, calibration, and application in the ocean, Front. Mar. Sci., 4, 429, 10.3389/fmars.2017.00429
Bittig, 2018, An alternative to static climatologies: Robust estimation of open ocean CO2 variables and nutrient concentrations from T, S, and O2 data using Bayesian neural networks, Front. Mar. Sci., 5, 328, 10.3389/fmars.2018.00328
Boss, 2008, Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite, Limnol. Oceanogr., 53, 2112, 10.4319/lo.2008.53.5_part_2.2112
Bourgeois, 2022, Stratification constrains future heat and carbon uptake in the Southern Ocean between 30°S and 55°S, Nat Commun, 13, 340, 10.1038/s41467-022-27979-5
Boyd, 2019, Multi-faceted particle pumps drive carbon sequestration in the ocean, Nature, 568, 327, 10.1038/s41586-019-1098-2
Boyd, P.W., Sundby, S., Pörtner, H.O., 2014. Cross-chapter box on net primary production in the ocean. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change (pp. 133-136). Cambridge University Press. hdl:10013/epic.45154.d001.
Boyer, 2023, Effects of the Pandemic on Observing the Global Ocean, Bull. Am. Meteorol. Soc., 104, E389, 10.1175/BAMS-D-21-0210.1
Briggs, E.M., Martz, T.R., Talley, L.D., Mazloff, M.R. and Johnson, K.S., 2018. Physical and biological drivers of biogeochemical tracers within the seasonal sea ice zone of the Southern Ocean from profiling floats. J. Geophys. Res.: Oceans, 123(2), pp.746-758. https:/doi.org/10.1002/2017JC012846.
Broecker, 1982
Bronselaer, 2018, Change in future climate due to Antarctic meltwater, Nature, 564, 53, 10.1038/s41586-018-0712-z
Bronselaer, 2020, Importance of wind and meltwater for observed chemical and physical changes in the Southern Ocean, Nat. Geosci., 13, 35, 10.1038/s41561-019-0502-8
Buitenhuis, 2013, Combined constraints on global ocean primary production using observations and models, Global Biogeochem. Cycles, 27, 847, 10.1002/gbc.20074
Bushinsky, 2017, Oxygen in the Southern Ocean from Argo floats: Determination of processes driving air-sea fluxes, J. Geophys. Res. Oceans, 122, 10.1002/2017JC012923
Bushinsky, 2019, Reassessing Southern Ocean air-sea CO2 flux estimates with the addition of biogeochemical float observations, Global Biogeochem. Cycles, 33, 1370, 10.1029/2019GB006176
Bushinsky, 2019, Observing changes in ocean carbonate chemistry: our autonomous future, Curr. Climate Change Reports, 5, 207, 10.1007/s40641-019-00129-8
Cai, 2022, Topographic modulation of the wind stress impact on eddy activity in the Southern Ocean, Geophys. Res. Lett., 49, 10.1029/2022GL097859
Campbell, 2019, Antarctic offshore polynyas linked to Southern Hemisphere climate anomalies, Nature, 570, 319, 10.1038/s41586-019-1294-0
Carr, 2006, A comparison of global estimates of marine primary production from ocean color, Deep Sea Res. Part II, 53, 741, 10.1016/j.dsr2.2006.01.028
Carranza, 2018, When Mixed Layers Are Not Mixed. Storm-Driven Mixing and Bio-optical Vertical Gradients in Mixed Layers of the Southern Ocean, J. Geophys. Res. Oceans, 123, 7264, 10.1029/2018JC014416
Carter, 2018, Updated methods for globally locally-interpolated estimation of alkalinity, pH, and Nitrate, Limnol. Oceanogr. Methods, 16, 119, 10.1002/lom3.10232
Carter, 2021, New and updated global empirical seawater property estimation routines, Limnol. Oceanogr. Methods, 19, 785, 10.1002/lom3.10461
Cavan, 2015, Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton fecal pellets, Geophys. Res. Lett., 42, 821, 10.1002/2014GL062744
Chamberlain, 2022, Acoustic float tracking with the Kalman smoother, J. Atmos. Oceanic Tech., 40, 15
Chamberlain, 2018, Observing the ice-covered Weddell Gyre with profiling floats: Position uncertainties and correlation statistics, J. Geophys. Res. Oceans, 123, 8383, 10.1029/2017JC012990
Chamberlain, 2023, Using existing Argo trajectories to statistically predict future float positions with a Transition Matrix, J. Atm. Oceanic Tech., 10.1175/JTECH-D-22-0070.1
Chen, 2022, The deep ocean’s carbon exhaust, Global Biogeochem. Cycles, 36, 10.1029/2021GB007156
Cheng, 2022, Another record: Ocean warming continues through 2021 despite La Niña conditions, Adv. Atmos. Sci., 39, 373, 10.1007/s00376-022-1461-3
Claustre, 2020, Observing the global ocean with biogeochemical-Argo, Ann. Rev. Mar. Sci., 12, 23, 10.1146/annurev-marine-010419-010956
Cornec, 2021, Impact of mesoscale eddies on deep chlorophyll maxima, Geophys. Res. Lett., 48, 10.1029/2021GL093470
Dall’Olmo, 2016, Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump, Nat. Geosci., 9, 820, 10.1038/ngeo2818
Del Castillo, 2019, Is the Southern Ocean getting greener?, Geophys. Res. Lett., 46, 6034, 10.1029/2019GL083163
DeVries, 2014, The oceanic anthropogenic CO 2 sink: Storage, air-sea fluxes, and transports over the industrial era, Global Biogeochem. Cycles, 28, 631, 10.1002/2013GB004739
Drake, 2019, Lagrangian timescales of Southern Ocean upwelling in a hierarchy of model resolutions, Geophys. Res. Lett., 45, 891, 10.1002/2017GL076045
Ducklow, 2001, Upper ocean carbon export and the biological pump, Oceanography, 14, 50, 10.5670/oceanog.2001.06
Fay, 2018, Utilizing the Drake Passage Time-series to understand variability and change in subpolar Southern Ocean pCO 2, Biogeosciences, 15, 3841, 10.5194/bg-15-3841-2018
Feely, 2009, Ocean acidification: Present conditions and future changes in a high-CO₂ world, Oceanography, 22, 36, 10.5670/oceanog.2009.95
Fennel, 2019, Advancing marine biogeochemical and ecosystem reanalyses and forecasts as tools for monitoring and managing ecosystem health, Front. Mar. Sci., 6, 89, 10.3389/fmars.2019.00089
Fong, 2019, Insights from GO-SHIP hydrography data into the thermodynamic consistency of CO2 system measurements in seawater, Mar. Chem., 211, 52, 10.1016/j.marchem.2019.03.006
Ford, 2021, Assimilating synthetic Biogeochemical-Argo and ocean colour observations into a global ocean model to inform observing system design, Biogeosciences, 18, 509, 10.5194/bg-18-509-2021
Forget, 2015, ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, 3071, 10.5194/gmd-8-3071-2015
Frölicher, 2015, Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models, J. Clim., 28, 862, 10.1175/JCLI-D-14-00117.1
Galbraith, 2010, Regional impacts of iron-light colimitation in a global biogeochemical model, Biogeosciences, 7, 1043, 10.5194/bg-7-1043-2010
Garcia, H.E., Locarnini, R.A., Boyer, T.P., Antonov, J.I., Baranova, O.K., Zweng, M.M., Reagan, J.R., Johnson, D.R., 2014. World Ocean Atlas 2013. Vol. 4: Dissolved Inorganic Nutrients (phosphate, nitrate, silicate). In: S. Levitus, A. Mishonov, Technical Ed., NOAA Atlas NESDIS76, (25 pp).
Garrison, 1991, Antarctic sea ice biota, Am. Zool., 31, 17, 10.1093/icb/31.1.17
Gibson, 1999, Annual cycle of fCO2 under sea-ice and in open water in Prydz Bay, East Antarctica, Mar. Chem., 66, 187, 10.1016/S0304-4203(99)00040-7
Giglio, 2018, Estimating oxygen in the Southern Ocean using Argo temperature and salinity, J. Geophys. Res. Oceans, 123, 4280, 10.1029/2017JC013404
Gille, 2002, Warming of the Southern Ocean since the 1950s, Science, 295, 1275, 10.1126/science.1065863
Gordon, 1978, Deep Antarctic convection west of Maud Rise, J. Phys. Oceanogr., 8, 600, 10.1175/1520-0485(1978)008<0600:DACWOM>2.0.CO;2
Graff, J.R., Westberry, T.K., Milligan, A.J., Brown, M.B., Dall’Olmo, G., van Dongen-Vogels, V., Reifel, K.M. and Behrenfeld, M.J., 2015. Analytical phytoplankton carbon measurements spanning diverse ecosystems. Deep Sea Research Part I, 102, pp.16-25. doi:10.1016/j.dsr.2015.04.006.
Gray, 2018, Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high-latitude Southern Ocean, Geophys. Res. Lett., 45, 9049, 10.1029/2018GL078013
Gruber, 2001, Air-sea flux of oxygen estimated from bulk data: Implications For the marine and atmospheric oxygen cycles, Global Biogeochem. Cycles, 15, 783, 10.1029/2000GB001302
Gruber, 2009, Oceanic sources, sinks, and transport of atmospheric CO2, Global Biogeochem. Cycles, 23, 10.1029/2008GB003349
Gruber, 2019, The variable Southern Ocean carbon sink, Ann. Rev. Mar. Sci., 11, 159, 10.1146/annurev-marine-121916-063407
Haëntjens, 2017, Revisiting Ocean Color algorithms for chlorophyll a and particulate organic carbon in the Southern Ocean using biogeochemical floats, J. Geophys. Res. Oceans, 122, 6583, 10.1002/2017JC012844
Hague, 2021, Southern Ocean Biogeochemical Argo detect under-ice phytoplankton growth before sea ice retreat, Biogeosciences, 18, 25, 10.5194/bg-18-25-2021
Haumann, 2020, Supercooled southern ocean waters, Geophys. Res. Lett., 47, 10.1029/2020GL090242
Haumann, 2016, Sea-ice transport driving Southern Ocean salinity and its recent trends, Nature, 537, 89, 10.1038/nature19101
Hennon, 2016, Profiling float-based observations of net respiration beneath the mixed layer, Global Biogeochem. Cycles, 30, 920, 10.1002/2016GB005380
Henson, 2010, Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity, Biogeosciences, 7, 621, 10.5194/bg-7-621-2010
Henson, 2016, Observing climate change trends in ocean biogeochemistry: when and where, Glob. Change Biol., 22, 1561, 10.1111/gcb.13152
Hofmann, E., Biddle, L., de Bruin, T., Brooks, C., Corney, S., Haumann, A., et al., 2020. 1st Southern Ocean Regional Workshop for the UN Decade of Ocean Science for Sustainable Development Report. Geneva: Zenodo, doi: 10.5281/ZENODO.3973745.
Horvat, 2022, Evidence of phytoplankton blooms under Antarctic sea ice, Front. Mar. Sci., 9, 2154, 10.3389/fmars.2022.942799
IOC-R, 2021. Integrated Ocean Carbon Research: A Summary of Ocean Carbon Research, and Vision of Coordinated Ocean Carbon Research and Observations for the Next Decade. R. Wanninkhof, C. Sabine and S. Aricò (eds.). Paris UNESCO. 46 pp. (IOC Technical Series, 158 Rev.) doi:10.25607/h0gj-pq41.
IPCC, 2019. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)].
Jena, 2020, Satellite observations of unprecedented phytoplankton blooms in the Maud Rise polynya, Southern Ocean, The Cryosphere, 14, 1385, 10.5194/tc-14-1385-2020
Jersild, 2021, Mesoscale eddies regulate seasonal iron supply and carbon drawdown in the Drake Passage, Geophys. Res. Lett., 48, 10.1029/2021GL096020
Johnson, 2017, Developing chemical sensors to observe the health of the global ocean, IEEE Transducers, 2017
Johnson, 2021, Constraint on net primary productivity of the global ocean by Argo oxygen measurements, Nat. Geosci., 14, 769, 10.1038/s41561-021-00807-z
Johnson, 2013, Long-term nitrate measurements in the ocean using the In Situ Ultraviolet Spectrophotometer: sensor integration into the APEX profiling float, J. Atmos. Oceanic Tech., 30, 1854, 10.1175/JTECH-D-12-00221.1
Johnson, K.S., Berelson, W.M., Boss, E.S., Chase, Z., Claustre, H., Emerson, S.R., Gruber, N., Körtzinger, A., Perry, M.J. and Riser, S.C., 2009. Observing biogeochemical cycles at global scales with profiling floats and gliders: prospects for a global array. Oceanography, 22(3), pp.216-225. https://www.jstor.org/stable/24861005.
Johnson, 2022, Carbon to nitrogen uptake ratios observed across the Southern Ocean by the SOCCOM profiling float array, J. Geophys. Res.: Oceans, 127, 10.1029/2022JC018859
Johnson, 2015, Air oxygen calibration of oxygen optodes on a profiling float array, J. Atmos. Oceanic Tech., 32, 2160, 10.1175/JTECH-D-15-0101.1
Johnson, 2016, Deep-Sea DuraFET: A pressure tolerant pH sensor designed for global sensor networks, Anal. Chem., 88, 3249, 10.1021/acs.analchem.5b04653
Johnson, 2017, Annual nitrate drawdown observed by SOCCOM profiling floats and the relationship to annual net community production, J. Geophys. Res.: Oceans, 122, 6668, 10.1002/2017JC012839
Johnson, 2017, Biogeochemical sensor performance in the SOCCOM profiling float array, J. Geophys. Res. Oceans, 122, 6416, 10.1002/2017JC012838
Jones, 2017, The influence of short-term events on the hydrographic and biological structure of the southwestern Ross Sea, J. Mar. Syst., 166, 184, 10.1016/j.jmarsys.2016.09.006
Kajtar, 2021, CMIP5 intermodel relationships in the baseline Southern Ocean climate system and with future projections, Earth’s Future, 9, 10.1029/2020EF001873
Kamenkovich, 2017, Observing System Simulation Experiments for an array of autonomous biogeochemical profiling floats in the Southern Ocean, J. Geophys. Res. Oceans, 122, 7595, 10.1002/2017JC012819
Kaufman, 2014, Biogeochemical variability in the southern Ross Sea as observed by a glider deployment, Deep-Sea Research I, 92, 93, 10.1016/j.dsr.2014.06.011
Kim, 2014, On the variability of Antarctic Circumpolar Current fronts inferred from 1992–2011 altimetry, J. Phys. Oceanogr., 44, 3054, 10.1175/JPO-D-13-0217.1
Klatt, 2007, A profiling float’s sense of ice, J. Atmos. Oceanic Tech., 24, 1301, 10.1175/JTECH2026.1
Körtzinger, 2000, The international at-sea intercomparison of fCO2 systems during the R/V Meteor Cruise 36/1 in the North Atlantic Ocean, Mar. Chem., 72, 171, 10.1016/S0304-4203(00)00080-3
Körtzinger, 2005, High quality oxygen measurements from profiling floats: A promising new technique, J. Atmos. Oceanic Tech., 22, 302, 10.1175/JTECH1701.1
Landschützer, P., Gruber, N., and Bakker, D. C. E., 2017. An updated observation-based global monthly gridded sea surface pCO2 and air-sea CO2 flux product from 1982 through 2015 and its monthly climatology (NCEI accession 0160558). version 2.2., NOAA National Centers for Environmental Information. Dataset [2017-07-11].
Laurenceau-Cornec, 2015, The relative importance of phytoplankton aggregates and zooplankton fecal pellets to carbon export: insights from free-drifting sediment trap deployments in naturally iron-fertilised waters near the Kerguelen Plateau, Biogeosciences, 12, 1007, 10.5194/bg-12-1007-2015
Le Moigne, 2016, What causes the inverse relationship between primary production and export efficiency in the Southern Ocean?, Geophys. Res. Lett., 43, 4457, 10.1002/2016GL068480
Levitus, 2012, World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010, Geophys. Res. Lett., 39, 10.1029/2012GL051106
Liang, 2018, A multivariate empirical orthogonal function method to construct nitrate maps in the Southern Ocean, J. Atmos. Oceanic Tech., 35, 1505, 10.1175/JTECH-D-18-0018.1
Llort, 2018, Evaluating Southern Ocean carbon eddy-pump from biogeochemical-Argo floats, J. Geophys. Res. Oceans, 123, 971, 10.1002/2017JC012861
Long, 2021, Strong Southern Ocean carbon uptake evident in airborne observations, Science, 374, 1275, 10.1126/science.abi4355
Mackay, N., and Watson, A., 2021. Winter air-sea CO2 fluxes constructed from summer observations of the polar southern ocean suggest weak outgassing. J. Geophys. Res.: Oceans, 126, e2020JC016600. https://doi.org/10.1029/2020JC016600.
Mahadevan, 2002, Biogeochemical patchiness at the sea surface, Geophys. Res. Lett., 29, 32-1, 10.1029/2001GL014116
Majkut, J.D., Carter, B.R., Frölicher, T.L., Dufour, C.O., Rodgers, K.B., Sarmiento, J.L., 2014. An observing system simulation for Southern Ocean carbon dioxide uptake. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372 (2019), 20130046. https://doi.org/10.1098/rsta.2013.0046.
Marinov, 2006, The southern ocean biogeochemical divide, Nature, 441, 964, 10.1038/nature04883
Marra, 2021, A database of ocean primary productivity from the 14C method, Limnol. Oceanogr. Lett., 6, 107, 10.1002/lol2.10175
Marshall, 2012, Closure of the meridional overturning circulation through Southern Ocean upwelling, Nat. Geosci., 5, 171, 10.1038/ngeo1391
Martin, 1990, Iron in Antartic waters, Nature, 345, 156, 10.1038/345156a0
Masich, 2018, Interfacial form stress in the Southern Ocean state estimate, J. Geophys. Res. Oceans, 123, 3368, 10.1029/2018JC013844
Matsumoto, 2022, The Global Ocean Biogeochemistry (GO-BGC) Array of Profiling Floats to Observe Changing Ocean Chemistry and Biology, Mar. Technol. Soc. J., 56, 122, 10.4031/MTSJ.56.3.25
Maurer, 2021, Delayed-mode quality control of oxygen, nitrate, and pH data on SOCCOM biogeochemical profiling floats. Frontiers in Marine, Science, 1118
Mazloff, 2018, Correlation Lengths for Estimating the Large-Scale Carbon and Heat Content of the Southern Ocean, J. Geophys. Res. Oceans, 123, 883, 10.1002/2017JC013408
Mazloff, 2023, Southern Ocean acidification revealed by Biogeochemical-Argo floats, J. Geophys. Res.: Oceans, 128, 10.1029/2022JC019530
McNeil, 2008, Southern Ocean acidification: A tipping point at 450-ppm atmospheric CO2, Proc. Natl. Acad. Sci., 105, 18860, 10.1073/pnas.0806318105
Meijers, A., Sallée, J. B., Grey, A., Johnson, K. S., Arrigo, K., Swart, S., King, B., and Mazloff, M. 2019. Southern Ocean [in “State of the Climate in 2018”]. Bull. Amer. Meteor. Soc., 100 (9), S181–S185, doi:10.1175/2019BAMSStateoftheClimate.1.
Meijers, 2012, Representation of the Antarctic Circumpolar Current in the CMIP5 climate models and future changes under warming scenarios, J. Geophys. Res., 117, C12008, 10.1029/2012JC008412
Meredith, 2017, Advances in understanding the Southern Ocean’s role in global climate: the ORCHESTRA and SOCCOM programs, Bull. Am. Meteorol. Soc., 98, S168
Meyer, 2022, Quantifying Seasonal Particulate Organic Carbon Concentrations and Export Potential in the Southwestern Ross Sea Using Autonomous Gliders, J. Geophys. Res.: Oceans, 127, 10.1029/2022JC018798
Mikaloff Fletcher, 2006, Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean, Global Biogeochem. Cycles, 20, 10.1029/2005GB002530
Moreau, 2020, Remote assessment of the fate of phytoplankton in the Southern Ocean sea-ice zone, Nat. Commun., 11, 1, 10.1038/s41467-020-16931-0
Morrison, 2015, Upwelling in the Southern Ocean, Phys. Today, 68, 27, 10.1063/PT.3.2654
Munday, 2013, Eddy saturation of equilibrated circumpolar currents, J. Phys. Oceanogr., 43, 507, 10.1175/JPO-D-12-095.1
Munk, 1998, Abyssal recipes II: Energetics of tidal and wind mixing, Deep Sea Res. Part I, 45, 1977, 10.1016/S0967-0637(98)00070-3
Munro, 2015, Recent evidence for a strengthening CO2 sink in the Southern Ocean from carbonate system measurements in the Drake Passage (2002–2015), Geophys. Res. Lett., 42, 7623, 10.1002/2015GL065194
2021
Newman, 1989, Estimating mean and variance for environmental samples with below detection limit observations, J. Am. Water Resour. Assoc., 25, 905, 10.1111/j.1752-1688.1989.tb05406.x
2004
NSTC, 2018. Science and technology for America’s oceans: a decadal vision. Subcommittee on Ocean Science and Technology, National Science & Technology Council.
Ohlmann, 1996, Ocean mixed layer radiant heating and solar penetration: A global analysis, J. Clim., 9, 2265, 10.1175/1520-0442(1996)009<2265:OMLRHA>2.0.CO;2
Olsen, 2020, GLODAPv2. 2020–the second update of GLODAPv2, Earth Syst. Sci. Data, 165
Oppenheimer, M., Glavovic, B.C., Hinkel, J., van de Wal, R., Magnan, A.K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R.M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., Sebesvari, Z., 2019. Sea Level Rise and Implicationsfor Low-Lying Islands, Coasts and Communities. In: Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N.M. (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 321–445. https://doi.org/10.1017/9781009157964.006.
Organelli, 2021, Hyperspectral radiometry on biogeochemical-argo floats: a bright perspective for phytoplankton diversity, Oceanography, 90, 10.5670/oceanog.2021.supplement.02-33
Owens, 2009, An improved calibration method for the drift of the conductivity sensor on autonomous CTD profiling floats by theta-S climatology, Deep-Sea Res. I, 56, 450, 10.1016/j.dsr.2008.09.008
Owens, 2022, OneArgo: A New Paradigm for Observing the Global Ocean, Mar. Technol. Soc. J., 56, 84, 10.4031/MTSJ.56.3.8
Paparella, 2002, Horizontal convection is non-turbulent, J. Fluid Mech., 466, 205, 10.1017/S0022112002001313
Pauling, 2016, The response of the Southern Ocean and Antarctic sea ice to freshwater from ice shelves in an Earth system model, J. Clim., 29, 1655, 10.1175/JCLI-D-15-0501.1
Pendleton, 2020, Opinion: we need a global movement to transform ocean science for a better world, Proc. Natl. Acad. Sci., 117, 9652, 10.1073/pnas.2005485117
Picheral, 2022, The Underwater Vision Profiler 6: an imaging sensor of particle size spectra and plankton, for autonomous and cabled platforms, Limnol. Oceanogr. Methods, 20, 115, 10.1002/lom3.10475
Porter, 2019, Evolution of the seasonal surface mixed layer of the Ross Sea, Antarctica, observed with autonomous profiling floats, J. Geophys. Res.: Oceans, 124, 4934, 10.1029/2018JC014683
Prend, C.J., Gille, S.T., Talley, L.D., Mitchell, B.G., Rosso, I. and Mazloff, M.R., 2019. Physical drivers of phytoplankton bloom initiation in the Southern Ocean's Scotia Sea. J. Geophys. Res.: Oceans, 124(8), pp.5811-5826. http://10.1029/2019JC015162.
Prend, C. J., Hunt, J. M., Mazloff, M. R., Gille, S. T., and Talley, L. D., 2022a. Controls on the boundary between thermally and non-thermally driven pCO2 regimes in the South Pacific. Geophys. Res. Lett. 49, e2021GL095797. 10.1029/2021GL095797.
Prend, C.J., Gray, A.R., Talley, L.D., Gille, S.T., Haumann, F.A., Johnson, K.S., Riser, S.C., Rosso, I., Sauvé, J. and Sarmiento, J.L., 2022b. Indo‐Pacific sector dominates Southern Ocean carbon outgassing. Global Biogeochem. Cycles 36(7), p.e2021GB007226. 10.1029/2021GB007226.
Prend, C.J., Keerthi, M.G., Lévy, M., Aumont, O., Gille, S.T. and Talley, L.D., 2022c. Sub‐Seasonal Forcing Drives Year‐To‐Year Variations of Southern Ocean Primary Productivity. Global Biogeochem. Cycles, 36(7), p.e2022GB007329. 10.1029/2022GB007329.
Riser, S.C., Wijffels, S., 2020. Environmental issues and the Argo array. https://argo.ucsd.edu/wp-content/uploads/sites/361/2020/05/final.Argo_Environmental_Impact.2020.05.10-1.pdf.
Riser, 2016, Fifteen years of ocean observations with the global Argo array, Nat. Clim. Chang., 6, 145, 10.1038/nclimate2872
Riser, 2008, Net production of oxygen in the subtropical ocean, Nature, 451, 323, 10.1038/nature06441
Riser, 2018, Profiling Floats in SOCCOM: Technical Capabilities for Studying the Southern Ocean, J. Geophys. Res.: Oceans, 123, 4055, 10.1002/2017JC013419
Roemmich, 2015, Unabated planetary warming and its ocean structure since 2006, Nat. Clim. Chang., 5, 240, 10.1038/nclimate2513
Roemmich, 2019, On the future of Argo: A global, full-depth, multi-disciplinary array, Front. Mar. Sci., 6, 439, 10.3389/fmars.2019.00439
Roesler, 2017, Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors, Limnol. Oceanogr. Methods, 15, 572, 10.1002/lom3.10185
Rosso, 2020, Water mass and biogeochemical variability in the Kerguelen sector of the Southern Ocean: A machine learning approach for a mixing hot spot, J. Geophys. Res.: Oceans, 125, 10.1029/2019JC015877
Rosso, 2017, Space and time variability of the Southern Ocean carbon budget, J. Geophys. Res. Oceans, 122, 7407, 10.1002/2016JC012646
Russell, 2006, Intercomparison of the Southern Ocean circulations in the IPCC Coupled Model Control Simulations, J. Clim., 19, 4560, 10.1175/JCLI3869.1
Russell, 2006, The Southern Hemisphere westerlies in a warming world: Propping open the door to the deep ocean, J. Clim., 19, 6382, 10.1175/JCLI3984.1
Russell, 2018, Metrics for the evaluation of the Southern Ocean in coupled climate models and earth system models, J. Geophys. Res. Oceans, 123, 3120, 10.1002/2017JC013461
Sallée, 2021, Summertime increases in upper-ocean stratification and mixed-layer depth, Nature, 591, 592, 10.1038/s41586-021-03303-x
Sarmiento, 1988, Ocean carbon-cycle dynamics and atmospheric pCO2, Philos. Trans. Roy. Soc. London Series A, Math. Phys. Sci., 325, 3
Sarmiento, 2004, High-latitude controls of thermocline nutrients and low latitude biological productivity, Nature, 427, 56, 10.1038/nature02127
Schallenberg, 2022, Iron limitation drives the globally extreme fluorescence/chlorophyll ratios of the Southern Ocean, Geophys. Res. Lett., 49, 10.1029/2021GL097616
Schlunegger, S., K.B. Rodgers, J.L. Sarmiento, J.L., Ilyina, T., Dunne, J.P., Takano, Y., Christian, J.R., Long, M.C., Frölicher, T.L., Slater, R. and Lehner, F., 2020. Time of Emergence and Large Ensemble Intercomparison for Ocean Biogeochemical Trends.Global Biogeochem. Cycles 34, e2019GB006453. DOI:10.1029/2019GB006453.
Shi, 2018, Evolving relative importance of the Southern Ocean and North Atlantic in anthropogenic ocean heat uptake, J. Clim., 31, 7459, 10.1175/JCLI-D-18-0170.1
Shi, 2020, Effects of buoyancy and wind forcing on Southern Ocean climate change, J. Clim., 33, 10003, 10.1175/JCLI-D-19-0877.1
Shi, 2021, Ocean warming and accelerating Southern Ocean zonal flow, Nat. Clim. Chang., 11, 1090, 10.1038/s41558-021-01212-5
Smith, 1990, Marine ecosystem research at the Weddell Sea ice edge: the AMERIEZ Program, Oceanography, 3, 22, 10.5670/oceanog.1990.04
Smith, 1986, Importance of ice edge phytoplankton production in the Southern Ocean, Bioscience, 36, 251, 10.2307/1310215
Stammer, D., Wunsch, C., Giering, R., Eckert, C., Heimbach, P., Marotzke, J., Adcroft, A., Hill, C.N. and Marshall, J., 2002. Global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. J. Geophys. Res.: Oceans, 107(C9), pp.1-1. doi:10.1029/ 2001JC000888.
Stoer, 2022, Estimating ocean net primary productivity from daily cycles of carbon biomass measured by profiling floats, Limnol. Oceanogr. Lett.
Straub, 1993, On the transport and angular momentum balance of channel models of the Antarctic Circumpolar Current, J. Phys. Oceanogr., 23, 776, 10.1175/1520-0485(1993)023<0776:OTTAAM>2.0.CO;2
Stukel, 2017, Stirring up the biological pump: Vertical mixing and carbon export in the Southern Ocean, Global Biogeochem. Cycles, 231, 1420, 10.1002/2017GB005652
Su, J., Schallenberg, C., Rohr, T., Strutton, P.G., Phillips, H.E., 2022. New estimates of Southern Ocean Annual Net Community Production revealed by BGC‐Argo floats. Geophys. Res. Lett. 49 (15), p.e2021GL097372. https://doi.org/10.1029/2021GL097372.
Su, 2021, The subsurface biological structure of Southern Ocean eddies revealed by BGC-Argo floats, J. Mar. Syst., 220, 10.1016/j.jmarsys.2021.103569
Swart, S., Johnson, K. S., Mazloff, M. R., Meijers, A., Meredith, M. P., Newman, L. and Sallée, J.-B. 2018. The Southern Ocean, [in “State of the Climate in 2017”]. Bull. Amer. Meteor. Soc., 99 (8), S185–S190, doi:10.1175/2018BAMSStateoftheClimate.1.
Swart, 2012, Ocean carbon uptake and storage influenced by wind bias in global climate models, Nat. Clim. Chang., 2, 47, 10.1038/nclimate1289
Swierczek, S., Mazloff, M. R., Morzfeld, M., Russell, J.L., 2021a. The effect of resolution on vertical heat and carbon transports in a regional ocean circulation model of the Argentine Basin. J. Geophys. Res.: Oceans, 126, e2021JC017235. 10.1029/2021JC017235.
Swierczek, S., Mazloff, M.R., Russell, J.L., 2021b. Investigating predictability of DIC and SST in the Argentine Basin through wind stress perturbation experiments. Geophys. Res. Lett. 48, e2021GL095504. 10.1029/2021GL095504.
Takahashi, 2014, Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations, Mar. Chem., 164, 95, 10.1016/j.marchem.2014.06.004
Talley, 2016, Changes in ocean heat, carbon content, and ventilation: a review of the first decade of GO-SHIP global repeat hydrography, Ann. Rev. Mar. Sci., 8, 10.1146/annurev-marine-052915-100829
Talley, 2019, Southern Ocean biogeochemical float deployment strategy, with example from the Greenwich Meridian line (GO-SHIP A12), J. Geophys. Res. Oceans, 124, 403, 10.1029/2018JC014059
Tamsitt, 2017, Spiraling pathways of global deep waters to the surface of the Southern Ocean, Nat. Commun., 8, 1, 10.1038/s41467-017-00197-0
Tamsitt, 2018, Transformation of deep water masses along Lagrangian upwelling pathways in the Southern Ocean, J. Geophys. Res. Oceans, 123, 1994, 10.1002/2017JC013409
Tamsitt, V., Bushinsky, S., Li, Z., du Plessis, M., Foppert, A., Gille, S., Rintoul, S., Shadwick, E., Silvano, A., Sutton, A., Swart, S., Tilbrook, B., Williams, N.L., 2021. Southern Ocean [in “State of the Climate in 2020”]. Bull. Amer. Meteor. Soc., 102(8), S341-S345, DOI:10.1175/BAMS-D-21-0081.1.
Thompson, 1988, Do we really need detection limits?, Analyst, 123, 405, 10.1039/a705702d
Toggweiler, 1998, On the ocean’s large-scale circulation near the limit of no vertical mixing, J. Phys. Oceanogr., 28, 1832, 10.1175/1520-0485(1998)028<1832:OTOSLS>2.0.CO;2
Twelves, 2021, Self-shading and meltwater spreading control the transition from light to iron limitation in an Antarctic coastal polynya, J. Geophys. Res.: Oceans, 126, 10.1029/2020JC016636
Uchida, 2019, Southern Ocean phytoplankton blooms observed by biogeochemical floats, J. Geophys. Res. Oceans, 124, 7328, 10.1029/2019JC015355
Valsala, 2021, An observing system simulation experiment for Indian Ocean surface pCO2 measurements, Prog. Oceanogr., 194, 102570, 10.1016/j.pocean.2021.102570
Verdy, 2017, A data assimilating model for estimating Southern Ocean biogeochemistry, J. Geophys. Res. Oceans, 122, 6968, 10.1002/2016JC012650
Volk, T., and Hoffert, M., 1985. Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric co2 changes. In: Sundquist, E., Broecker, W. (Eds.), The carbon cycle and atmospheric CO 2: Natural variations Archean to present. Chapman conference papers, 1984 (Geophysical Monograph 32, pp. 99–110). Washington, DC: American Geophysical Union.
von Berg, 2020, Weddell Sea phytoplankton blooms modulated by sea ice variability and polynya formation, Geophys. Res. Lett., 47, 10.1029/2020GL087954
Westberry, 2008, Carbon-based primary productivity modeling with vertically resolved photoacclimation, Global Biogeochem. Cycles, 22, GB2024, 10.1029/2007GB003078
Wilkinson, 2016, The FAIR Guiding Principles for scientific data management and stewardship, Sci. Data, 3, 1, 10.1038/sdata.2016.18
Williams, 2017, Calculating surface ocean pCO2 from biogeochemical Argo floats equipped with pH: An uncertainty analysis, Global Biogeochem. Cycles, 31, 591, 10.1002/2016GB005541
Williams, 2018, Assessment of the carbonate chemistry seasonal cycles in the Southern Ocean from persistent observational platforms, J. Geophys. Res. Oceans, 1–20
Wilson, 2019, Winter upper-ocean stability and ice–ocean feedbacks in the sea ice–covered Southern Ocean, J. Phys. Oceanogr., 49, 1099, 10.1175/JPO-D-18-0184.1
Wong, 2011, Profiling float observations of the upper ocean under sea ice off the Wilkes Land coast of Antarctica, J. Phys. Oceanogr., 41, 1102, 10.1175/2011JPO4516.1
Wong, 2020, Argo data 1999–2019: two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats, Front. Mar. Sci., 7, 700, 10.3389/fmars.2020.00700
Wu, 2022, Integrated analysis of carbon dioxide and oxygen concentrations as a quality control of ocean float data, Commun. Earth Environ., 3, 1, 10.1038/s43247-022-00421-w
Xing, 2011, Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio - Argo floats: Chlorophyll a retrieval, J. Geophys. Res., 116, C06020, 10.1029/2010JC006899