The Smoothness of Laws of Random Flags and Oseledets Spaces of Linear Stochastic Differential Equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arnold, L.: Random dynamical systems. Preliminary version of book. Institut für Dynamische Systeme, Universität Bremen (1995).
Arnold, L. and Imkeller, P.: 'Stratonovich calculus with spatial parameters and anticipative problems in multiplicative ergodic theory', Stoch. Proc. Appl. 62 (1996), 19–54.
Arnold, L. and Imkeller, P.: 'Furstenberg-Khasminskii formulas for Lyapunov exponents via anticipative calculus', Stochastics and Stochastics Reports 54 (1995), 127–168.
Arnold, L., Kliemann, W. and Oeljeklaus, E.: 'Lyapunov exponents of linear stochastic systems', in: Arnold, L. and Wihstutz, V. (eds.) Lyapunov Exponents. LNM 1186, 85–125. Springer: Berlin, 1986.
Arnold, L., Oeljeklaus, E. and Pardoux, E.: 'Almost sure and moment stability for linear Ito equations', in: Arnold, L. and Wihstutz, V. (eds.), Lyapunov Exponents. LNM 1186, 129–159. Springer: Berlin, 1986.
Arnold, L. and San Martin, L. A.: 'A multiplicative ergodic theorem for rotation numbers', J. Dynamics Diff. Equ. 1 (1989), 95–119.
Baxendale, P.: 'The Lyapunov spectrum of a stochastic flow of diffeomorphisms', in: Arnold, L. and Wihstutz, V. (eds.), Lyapunov exponents. LNM 1186 322–337 Springer: Berlin, 1986.
Bell, D.: The Malliavin calculus. Pitman Monographs and Surveys in Pure and Applied Math. 34. Longman and Wiley, New York, 1987.
Bismut, J. M.: 'Martingales, the Malliavin Calculus and Hypoellipticity under General Hörmander's Conditions', Z. Wahrscheinlichkeitstheorie verw. Geb. 56 (1981), 469–505.
Bismut, J. M. and Michel, D.: 'Diffusions conditionnelles. I. Hypoellipticité partielle, II. Générateur conditionnel. Application au filtrage', J. Funct. Anal. Part I 44 (1981), 174–211, Part II 45 (1982), 274–292.
Bouleau, N. and Hirsch, F.: Dirichlet forms and analysis on Wiener space, W. de Gruyter: Berlin, 1991.
Coquio, A.: Calcul de Malliavin, existence et régularité de la densité d'une probabilité invariante d'une diffusion sur une variété Riemannienne compacte. Preprint, Inst. Fourier, Grenoble 1994.
Crauel, H.: 'Lyapunov exponents of random dynamical systems on Grassmannians', in: Arnold, L., Crauel, H. and Eckmann, J. P. (eds.): Lyapunov exponents. LNM 1486. Springer: Berlin 1991.
Crauel, H.: 'Markov measures for random dynamical systems', Stochastics and Stochastics Reports 37 (1991), 153–173.
Federer, H.: Geometric measure theory, Springer: Berlin, 1969.
Goldsheid, I. Y. and Margulis, G. A.: 'Lyapunov indices of a product of random matrices', Russ. Math. Surveys 44 (1989), 11–71.
Helgason, S.: Differential geometry, Lie groups, and symmetric spaces, Academic Press: New York, 1978.
Ichihara, K. and Kunita, H.: 'A classification of the second order degenerate elliptic operators and its probabilistic characterization', Z. Wahrscheinlichkeitstheorie verw. Gebiete 30 (1974), 235–254, and 39 (1977), 81–84 (Supplements).
Ikeda, N. and Watanabe, S.: Stochastic differential equations and diffusion processes, 2nd ed. North Holland 1989.
Imkeller, P.: 'Enlargement of the Wiener filtration by an absolutely continuous random variable via Malliavin's calculus', Probab. Th. Rel. Fields 106 (1996), 105–135.
Imkeller, P.: Enlargement of the Wiener filtration by a manifold valued random variable via Malliavin's calculus, Statistics and Control of Stochastic Processes. The Liptsv Festschrift. World Scientifics, Singapore, 1997.
Jacod, J.: 'Grossissement initial, hypothèse (H'), et théorème de Girsanov', in: Jeulin, T. and Yor, M. (eds.), Grossissements de filtrations: exemples et applications. LNM 1118. Springer: Berlin, 1985.
Khasminskii, R. Z.: Stochastic stability of differential equations, Sijthoff and Noordhoff: Alphen 1980.
Kusuoka, S. and Stroock, D. W.: 'The partial Malliavin calculus and its applications to nonlinear filtering', Stochastics 12 (1984), 83–142.
Ledrappier, F. and Young, L. S.: 'Dimension formula for random transformations', Comm. Math. Phys. 117 (1988), 529–548.
Le Jan, Y.: 'Equilibre statistique pour les produits de difféomorphismes aléatoires indépendants', Ann. Inst. H. Poincaré 23 (1987), 111–120.
Malliavin, P.: Stochastic calculus of variation and hypoelliptic operators, Proc. Intern. Symp. SDE Kyoto, 1976, 195–263. Kinokynia: Tokyo, 1978.
Malliavin, P.: 'Ck-hypoellipticity with degeneracy', in: Friedman, A. and Pinsky, M. (eds.), Stochastic Analysis. 199–214, 327–340. Acad. Press, New York, 1978.
Norris, J. L.: Simplified Malliavin calculus. Séminaire de Probabilités XX. LNM 1204, 101–130. Springer: Berlin, 1986.
Nualart, D.: The Malliavin calculus and related topics. Springer: Berlin, 1995.
Nualart, D.: Malliavin's calculus and anticipative calculus. St Flour Lecture Notes, 1996.
Nualart, D. and Zakai, M.: The partial Malliavin calculus. In: Sem. de Probabilites XXIII. LNM 1372, pp. 362–381. Springer: Berlin, 1989.
Ruelle, D.: 'Ergodic theory of differentiable dynamical systems', Publ. Math. IHES 50 (1979), 275–306.
Ruffino, P.: Rotation numbers for stochastic dynamical systems. Ph.D. Thesis, Univ. Warwick. 1995.
San Martin, L.: 'Invariant control sets on flag manifolds', Math. Control Signal Systems 6 (1993), 41–61.
San Martin, L.: Groups transitive on all the Grassmannians. Preprint, Univ. Campinas, (Brazil) 1995.
Stroock, D. W.: 'The Malliavin Calculus. Functional Analytic Approach', J. Funct. Anal. 44 (1981), 212–257.
Stroock, D. W.: 'The Malliavin calculus and its applications to second order parabolic differential equations', Math. Systems Theory, Part I, 14 (1981), 25–65, Part II, 14 (1981), 141–171.
Stroock, D. W.: Some applications of stochastic calculus to partial differential equations. In: Ecole d'Eté de Probabilité de St Flour. LNM 976 (1983), 267–382.
Sussmann, H.: 'Orbits of families of vector fields and integrability of distributions', TAMS 180 (1973), 171–188.
Sussmann, H. and Jurdjevic, V.: 'Controllability of nonlinear systems', J. Diff. Eqns. 12 (1972), 95–116.
Taniguchi, S.: 'Malliavin's stochastic calculus of variations for manifold valued Wiener functionals', Z. Wahrscheinlichkeitstheorie verw. Geb. 65 (1983), 269–290.
Watanabe, S.: Stochastic differential equations and Malliavin calculus, Tata Institut of Fundamental Research. Springer: Berlin, 1984.