The Smoothness of Laws of Random Flags and Oseledets Spaces of Linear Stochastic Differential Equations

Peter Imkeller1
1Institute für Mathematik, Huwmboldt-Universität zu Berlin, Berlin, Germany

Tóm tắt

The Oseledets spaces of a random dynamical system generated by a linear stochastic differential equation are obtained as intersections of the corresponding nested invariant spaces of a forward and a backward flag, described as the stationary states of flows on corresponding flag manifolds. We study smoothness of their laws and conditional laws by applying Malliavin's calculus. If the Lie algebras induced by the actions of the matrices generating the system on the manifolds span the tangent spaces at any point, laws and conditional laws are seen to be C∞-smooth. As an application we find that the semimartingale property is well preserved if the Wiener filtration is enlarged by the information present in the flag or Oseledets spaces.

Từ khóa


Tài liệu tham khảo

Arnold, L.: Random dynamical systems. Preliminary version of book. Institut für Dynamische Systeme, Universität Bremen (1995).

Arnold, L. and Imkeller, P.: 'Stratonovich calculus with spatial parameters and anticipative problems in multiplicative ergodic theory', Stoch. Proc. Appl. 62 (1996), 19–54.

Arnold, L. and Imkeller, P.: 'Furstenberg-Khasminskii formulas for Lyapunov exponents via anticipative calculus', Stochastics and Stochastics Reports 54 (1995), 127–168.

Arnold, L., Kliemann, W. and Oeljeklaus, E.: 'Lyapunov exponents of linear stochastic systems', in: Arnold, L. and Wihstutz, V. (eds.) Lyapunov Exponents. LNM 1186, 85–125. Springer: Berlin, 1986.

Arnold, L., Oeljeklaus, E. and Pardoux, E.: 'Almost sure and moment stability for linear Ito equations', in: Arnold, L. and Wihstutz, V. (eds.), Lyapunov Exponents. LNM 1186, 129–159. Springer: Berlin, 1986.

Arnold, L. and San Martin, L. A.: 'A multiplicative ergodic theorem for rotation numbers', J. Dynamics Diff. Equ. 1 (1989), 95–119.

Baxendale, P.: 'The Lyapunov spectrum of a stochastic flow of diffeomorphisms', in: Arnold, L. and Wihstutz, V. (eds.), Lyapunov exponents. LNM 1186 322–337 Springer: Berlin, 1986.

Bell, D.: The Malliavin calculus. Pitman Monographs and Surveys in Pure and Applied Math. 34. Longman and Wiley, New York, 1987.

Bismut, J. M.: 'Martingales, the Malliavin Calculus and Hypoellipticity under General Hörmander's Conditions', Z. Wahrscheinlichkeitstheorie verw. Geb. 56 (1981), 469–505.

Bismut, J. M. and Michel, D.: 'Diffusions conditionnelles. I. Hypoellipticité partielle, II. Générateur conditionnel. Application au filtrage', J. Funct. Anal. Part I 44 (1981), 174–211, Part II 45 (1982), 274–292.

Bouleau, N. and Hirsch, F.: Dirichlet forms and analysis on Wiener space, W. de Gruyter: Berlin, 1991.

Coquio, A.: Calcul de Malliavin, existence et régularité de la densité d'une probabilité invariante d'une diffusion sur une variété Riemannienne compacte. Preprint, Inst. Fourier, Grenoble 1994.

Crauel, H.: 'Lyapunov exponents of random dynamical systems on Grassmannians', in: Arnold, L., Crauel, H. and Eckmann, J. P. (eds.): Lyapunov exponents. LNM 1486. Springer: Berlin 1991.

Crauel, H.: 'Markov measures for random dynamical systems', Stochastics and Stochastics Reports 37 (1991), 153–173.

Federer, H.: Geometric measure theory, Springer: Berlin, 1969.

Goldsheid, I. Y. and Margulis, G. A.: 'Lyapunov indices of a product of random matrices', Russ. Math. Surveys 44 (1989), 11–71.

Helgason, S.: Differential geometry, Lie groups, and symmetric spaces, Academic Press: New York, 1978.

Ichihara, K. and Kunita, H.: 'A classification of the second order degenerate elliptic operators and its probabilistic characterization', Z. Wahrscheinlichkeitstheorie verw. Gebiete 30 (1974), 235–254, and 39 (1977), 81–84 (Supplements).

Ikeda, N. and Watanabe, S.: Stochastic differential equations and diffusion processes, 2nd ed. North Holland 1989.

Imkeller, P.: 'Enlargement of the Wiener filtration by an absolutely continuous random variable via Malliavin's calculus', Probab. Th. Rel. Fields 106 (1996), 105–135.

Imkeller, P.: Enlargement of the Wiener filtration by a manifold valued random variable via Malliavin's calculus, Statistics and Control of Stochastic Processes. The Liptsv Festschrift. World Scientifics, Singapore, 1997.

Jacod, J.: 'Grossissement initial, hypothèse (H'), et théorème de Girsanov', in: Jeulin, T. and Yor, M. (eds.), Grossissements de filtrations: exemples et applications. LNM 1118. Springer: Berlin, 1985.

Khasminskii, R. Z.: Stochastic stability of differential equations, Sijthoff and Noordhoff: Alphen 1980.

Kusuoka, S. and Stroock, D. W.: 'The partial Malliavin calculus and its applications to nonlinear filtering', Stochastics 12 (1984), 83–142.

Ledrappier, F. and Young, L. S.: 'Dimension formula for random transformations', Comm. Math. Phys. 117 (1988), 529–548.

Le Jan, Y.: 'Equilibre statistique pour les produits de difféomorphismes aléatoires indépendants', Ann. Inst. H. Poincaré 23 (1987), 111–120.

Malliavin, P.: Stochastic calculus of variation and hypoelliptic operators, Proc. Intern. Symp. SDE Kyoto, 1976, 195–263. Kinokynia: Tokyo, 1978.

Malliavin, P.: 'Ck-hypoellipticity with degeneracy', in: Friedman, A. and Pinsky, M. (eds.), Stochastic Analysis. 199–214, 327–340. Acad. Press, New York, 1978.

Norris, J. L.: Simplified Malliavin calculus. Séminaire de Probabilités XX. LNM 1204, 101–130. Springer: Berlin, 1986.

Nualart, D.: The Malliavin calculus and related topics. Springer: Berlin, 1995.

Nualart, D.: Malliavin's calculus and anticipative calculus. St Flour Lecture Notes, 1996.

Nualart, D. and Zakai, M.: The partial Malliavin calculus. In: Sem. de Probabilites XXIII. LNM 1372, pp. 362–381. Springer: Berlin, 1989.

Ruelle, D.: 'Ergodic theory of differentiable dynamical systems', Publ. Math. IHES 50 (1979), 275–306.

Ruffino, P.: Rotation numbers for stochastic dynamical systems. Ph.D. Thesis, Univ. Warwick. 1995.

San Martin, L.: 'Invariant control sets on flag manifolds', Math. Control Signal Systems 6 (1993), 41–61.

San Martin, L.: Groups transitive on all the Grassmannians. Preprint, Univ. Campinas, (Brazil) 1995.

Stroock, D. W.: 'The Malliavin Calculus. Functional Analytic Approach', J. Funct. Anal. 44 (1981), 212–257.

Stroock, D. W.: 'The Malliavin calculus and its applications to second order parabolic differential equations', Math. Systems Theory, Part I, 14 (1981), 25–65, Part II, 14 (1981), 141–171.

Stroock, D. W.: Some applications of stochastic calculus to partial differential equations. In: Ecole d'Eté de Probabilité de St Flour. LNM 976 (1983), 267–382.

Sussmann, H.: 'Orbits of families of vector fields and integrability of distributions', TAMS 180 (1973), 171–188.

Sussmann, H. and Jurdjevic, V.: 'Controllability of nonlinear systems', J. Diff. Eqns. 12 (1972), 95–116.

Taniguchi, S.: 'Malliavin's stochastic calculus of variations for manifold valued Wiener functionals', Z. Wahrscheinlichkeitstheorie verw. Geb. 65 (1983), 269–290.

Watanabe, S.: Stochastic differential equations and Malliavin calculus, Tata Institut of Fundamental Research. Springer: Berlin, 1984.