The Slowdown in Global Air-Pollutant Emission Growth and Driving Factors

One Earth - Tập 1 Số 1 - Trang 138-148 - 2019
Jing Meng1, Haozhe Yang2, Kan Yi2, Dabo Guan3, Zhu Liu3, Zhifu Mi1, D’Maris Coffman1, Xuejun Wang2, Qirui Zhong2, Tianbo Huang2, Wenjun Meng2, Shu Tao2
1The Bartlett School of Construction and Project Management, University College London, London, WC1E 7HB, UK
2Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
3Department of Earth System Sciences, Tsinghua University, Beijing 100080, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cohen, 2005, The global burden of disease due to outdoor air pollution, J. Toxicol. Env. Heal. A, 68, 1301, 10.1080/15287390590936166

Zhang, 2014, Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective, Atmos. Chem. Phys., 13, 7053, 10.5194/acp-13-7053-2013

Bond, 2013, Bounding the role of black carbon in the climate system: a scientific assessment, J. Geophys. Res. Atmos., 118, 5380, 10.1002/jgrd.50171

Dominici, 2014, Particulate matter matters, Science, 344, 257, 10.1126/science.1247348

Lelieveld, 2015, The contribution of outdoor air pollution sources to premature mortality on a global scale, Nature, 525, 367, 10.1038/nature15371

Brauer, 2015, Ambient air pollution exposure estimation for the global burden of disease 2013, Environ. Sci. Technol., 50, 79, 10.1021/acs.est.5b03709

Domenici, 1979, Clean Air Act amendments of 1977, Nat. Resour. J., 19, 475

Environmental Protection Agency. Benefits and costs of the Clean Air Act, 1970 to 1990 - study design and summary of results. https://www.epa.gov/clean-air-act-overview/benefits-and-costs-clean-air-act-1970-1990-study-design-and-summary-results.

Huang, 2017, Spatial and temporal trends in global emissions of nitrogen oxides from 1960 to 2014, Environ. Sci. Technol., 51, 7992, 10.1021/acs.est.7b02235

Meng, 2017, Improvement of a global high-resolution ammonia emission inventory for combustion and industrial sources with new data from the residential and transportation sectors, Environ. Sci. Technol., 51, 2821, 10.1021/acs.est.6b03694

Guan, 2014, The socioeconomic drivers of China’s primary PM2.5 emissions, Environ. Res. Lett., 9, 024010, 10.1088/1748-9326/9/2/024010

Textor, 2006, Analysis and quantification of the diversities of aerosol life cycles within AeroCom, Atmos. Chem. Phys., 6, 1777, 10.5194/acp-6-1777-2006

Meng, 2016, Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption, Proc. Math. Phys. Eng. Sci., 472, 20160380

Nagashima, 2016, Identifying critical supply chain paths and key sectors for mitigating primary carbonaceous PM2.5 mortality in Asia, Econ. Syst. Res., 29, 1

Meng, 2018, Origin and radiative forcing of black carbon aerosol: production and consumption perspectives, Environ. Sci. Technol., 52, 6380, 10.1021/acs.est.8b01873

Lin, 2016, Global climate forcing of aerosols embodied in international trade, Nat. Geosci., 9, 790, 10.1038/ngeo2798

Zhang, 2017, Transboundary health impacts of transported global air pollution and international trade, Nature, 543, 705, 10.1038/nature21712

Yi, 2019, The cascade of global trade to large climate forcing over the Tibetan Plateau glaciers, Nat. Commun., 10, 3281, 10.1038/s41467-019-10876-9

Gordon, 2014, Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles, Atmos. Chem. Phys., 14, 4661, 10.5194/acp-14-4661-2014

Megaritis, 2013, Response of fine particulate matter concentrations to changes of emissions and temperature in Europe, Atmos. Chem. Phys., 13, 3423, 10.5194/acp-13-3423-2013

Reddy, 2005, Estimates of global multicomponent aerosol optical depth and direct radiative perturbation in the Laboratoire de Météorologie Dynamique general circulation model, J. Geophys. Res. Atmos., 110, 10.1029/2004JD004757

Huang, 2014, High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218, 10.1038/nature13774

Klimont, 2002, Anthropogenic emissions of non-methane volatile organic compounds in China, Atmos. Environ., 36, 1309, 10.1016/S1352-2310(01)00529-5

Bouwman, 1997, A global high-resolution emission inventory for ammonia, Glob. Biogeochem. Cycles, 11, 561, 10.1029/97GB02266

Ramanathan, 2008, Global and regional climate changes due to black carbon, Nat. Geosci., 1, 221, 10.1038/ngeo156

Kanakidou, 2005, Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053, 10.5194/acp-5-1053-2005

Dai, 2014, Associations of fine particulate matter species with mortality in the United States: a multicity time-series analysis, Environ. Health Perspect., 122, 837, 10.1289/ehp.1307568

Meng, 2016, Potential health benefits of controlling dust emissions in Beijing, Environ. Pollut., 213, 850, 10.1016/j.envpol.2016.03.021

Meskhidze, 2005, Dust and pollution: a recipe for enhanced ocean fertilization?, J. Geophys. Res. Atmos., 110, 10.1029/2004JD005082

Chen, 2013, Demand-driven energy requirement of world economy 2007: a multi-region input-output network simulation, Commun. Nonlinear Sci., 18, 1757, 10.1016/j.cnsns.2012.11.004

Davis, 2010, Consumption-based accounting of CO2 emissions, Proc. Natl. Acad. Sci. USA, 107, 5687, 10.1073/pnas.0906974107

Wiedmann, 2015, The material footprint of nations, Proc. Natl. Acad. Sci. U S A, 112, 6271, 10.1073/pnas.1220362110

Lenzen, 2012, International trade drives biodiversity threats in developing nations, Nature, 486, 110, 10.1038/nature11145

Liang, 2015, Atmospheric mercury footprints of nations, Environ. Sci. Technol., 49, 3566, 10.1021/es503977y

Chen, 2012, Global network of embodied water flow by systems input-output simulation, Front Earth Sci., 6, 331, 10.1007/s11707-012-0305-3

Yu, 2013, Tele-connecting local consumption to global land use, Glob. Environ. Change, 23, 1178, 10.1016/j.gloenvcha.2013.04.006

Feng, 2015, Drivers of the US CO2 emissions 1997–2013, Nat. Commun., 6, 7714, 10.1038/ncomms8714

Malik, 2016, Trends in global greenhouse gas emissions from 1990 to 2010, Environ. Sci. Technol., 50, 4722, 10.1021/acs.est.5b06162

Lan, 2016, A structural decomposition analysis of global energy footprints, Appl. Energy, 163, 436, 10.1016/j.apenergy.2015.10.178

Meng, 2015, Tracing primary PM2.5 emissions via Chinese supply chains, Environ. Res. Lett., 10, 054005, 10.1088/1748-9326/10/5/054005

Lei, 2008, Technology-based emission inventory of particulate matters (PM) from cement industry, Huan Jing Ke Xue, 29, 2366

Dalin, 2014, Water resources transfers through Chinese interprovincial and foreign food trade, Proc. Natl. Acad. Sci. U S A, 111, 9774, 10.1073/pnas.1404749111

Wiedenhofer, 2016, Unequal household carbon footprints in China, Nat. Clim. Change, 7, 75, 10.1038/nclimate3165

West, 2013, Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health, Nat. Clim. Change, 3, 885, 10.1038/nclimate2009

Minx, 2011, A “carbonizing dragon”: China’s fast growing CO2 emissions revisited, Environ. Sci. Technol., 45, 9144, 10.1021/es201497m

Peters, 2007, China's growing CO2 emissions a race between increasing consumption and efficiency gains, Environ. Sci. Technol., 41, 5939, 10.1021/es070108f

Guan, 2014, Determinants of stagnating carbon intensity in China, Nat. Clim. Change, 4, 1017, 10.1038/nclimate2388

Liu, 2017, How China achieved its 11th Five-Year Plan emissions reduction target: a structural decomposition analysis of industrial SO2 and chemical oxygen demand, Sci. Total Environ., 574, 1104, 10.1016/j.scitotenv.2016.08.176

2016

Liu, 2016, Air pollutant emissions from Chinese households: a major and underappreciated ambient pollution source, Proc. Natl. Acad. Sci. U S A, 113, 7756, 10.1073/pnas.1604537113

Frankel, 2005, Is trade good or bad for the environment? Sorting out the causality, Rev. Econ. Stat., 87, 85, 10.1162/0034653053327577

2014

Meng, 2018, The rise of South-South trade and its effect on global CO2 emissions, Nat. Commun., 9, 1871, 10.1038/s41467-018-04337-y

Kagawa, 2015, CO2 emission clusters within global supply chain networks: implications for climate change mitigation, Glob. Environ. Change, 35, 486, 10.1016/j.gloenvcha.2015.04.003

Wang, 2014, Exposure to ambient black carbon derived from a unique inventory and high-resolution model, Proc. Natl. Acad. Sci. U S A, 111, 2459, 10.1073/pnas.1318763111

Huang, 2015, Global organic carbon emissions from primary sources from 1960 to 2009, Atmos. Environ., 122, 505, 10.1016/j.atmosenv.2015.10.017

Huang, 2014, Quantification of global primary emissions of PM2.5, PM10, and TSP from combustion and industrial process sources, Environ. Sci. Technol., 48, 13834, 10.1021/es503696k

Zhang, 2007, Major components of China's anthropogenic primary particulate emissions, Environ. Res. Lett., 2, 045027, 10.1088/1748-9326/2/4/045027

Bo, 2008, Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China, Atmos. Chem. Phys., 8, 7297, 10.5194/acp-8-7297-2008

Holmengen, 2009

2016

Wang, 2013, High-resolution mapping of combustion processes and implications for CO2 emissions, Atmos. Chem. Phys., 13, 5189, 10.5194/acp-13-5189-2013

Leontief, 1970, Environmental repercussions and the economic structure: an input-output approach, Rev. Econ. Stat., 52, 262, 10.2307/1926294

Skelton, 2011, Mapping flows of embodied emissions in the global production system, Environ. Sci. Technol., 45, 10516, 10.1021/es202313e

Narayanan, 2012

Feng, 2012, Analyzing drivers of regional carbon dioxide emissions for China, J. Ind. Ecol., 16, 600, 10.1111/j.1530-9290.2012.00494.x

Miller, 2009

Dietzenbacher, 1998, Structural decomposition techniques: sense and sensitivity, Econ. Syst. Res., 10, 307, 10.1080/09535319800000023

Wiedmann, 2011, Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input-output analysis, Ecol. Econ., 70, 1937, 10.1016/j.ecolecon.2011.06.014

Peters, 2012, A synthesis of carbon in international trade, Biogeosciences, 9, 3247, 10.5194/bg-9-3247-2012

Lenzen, 2010, Uncertainty analysis for multi-region input–output models––a case study of the UK's carbon footprint, Econ. Syst. Res., 22, 43, 10.1080/09535311003661226

Oita, 2016, Substantial nitrogen pollution embedded in international trade, Nat. Geosci., 9, 111, 10.1038/ngeo2635

Nagashima, 2018, The sign reversal problem in structural decomposition analysis, Energy Econ., 72, 307, 10.1016/j.eneco.2018.04.027

Arto, 2014, Drivers of the growth in global greenhouse gas emissions, Environ. Sci. Technol., 48, 5388, 10.1021/es5005347