The Slowdown in Global Air-Pollutant Emission Growth and Driving Factors
Tóm tắt
Từ khóa
Tài liệu tham khảo
Cohen, 2005, The global burden of disease due to outdoor air pollution, J. Toxicol. Env. Heal. A, 68, 1301, 10.1080/15287390590936166
Zhang, 2014, Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective, Atmos. Chem. Phys., 13, 7053, 10.5194/acp-13-7053-2013
Bond, 2013, Bounding the role of black carbon in the climate system: a scientific assessment, J. Geophys. Res. Atmos., 118, 5380, 10.1002/jgrd.50171
Lelieveld, 2015, The contribution of outdoor air pollution sources to premature mortality on a global scale, Nature, 525, 367, 10.1038/nature15371
Brauer, 2015, Ambient air pollution exposure estimation for the global burden of disease 2013, Environ. Sci. Technol., 50, 79, 10.1021/acs.est.5b03709
Domenici, 1979, Clean Air Act amendments of 1977, Nat. Resour. J., 19, 475
Environmental Protection Agency. Benefits and costs of the Clean Air Act, 1970 to 1990 - study design and summary of results. https://www.epa.gov/clean-air-act-overview/benefits-and-costs-clean-air-act-1970-1990-study-design-and-summary-results.
Huang, 2017, Spatial and temporal trends in global emissions of nitrogen oxides from 1960 to 2014, Environ. Sci. Technol., 51, 7992, 10.1021/acs.est.7b02235
Meng, 2017, Improvement of a global high-resolution ammonia emission inventory for combustion and industrial sources with new data from the residential and transportation sectors, Environ. Sci. Technol., 51, 2821, 10.1021/acs.est.6b03694
Guan, 2014, The socioeconomic drivers of China’s primary PM2.5 emissions, Environ. Res. Lett., 9, 024010, 10.1088/1748-9326/9/2/024010
Textor, 2006, Analysis and quantification of the diversities of aerosol life cycles within AeroCom, Atmos. Chem. Phys., 6, 1777, 10.5194/acp-6-1777-2006
Meng, 2016, Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption, Proc. Math. Phys. Eng. Sci., 472, 20160380
Nagashima, 2016, Identifying critical supply chain paths and key sectors for mitigating primary carbonaceous PM2.5 mortality in Asia, Econ. Syst. Res., 29, 1
Meng, 2018, Origin and radiative forcing of black carbon aerosol: production and consumption perspectives, Environ. Sci. Technol., 52, 6380, 10.1021/acs.est.8b01873
Lin, 2016, Global climate forcing of aerosols embodied in international trade, Nat. Geosci., 9, 790, 10.1038/ngeo2798
Zhang, 2017, Transboundary health impacts of transported global air pollution and international trade, Nature, 543, 705, 10.1038/nature21712
Yi, 2019, The cascade of global trade to large climate forcing over the Tibetan Plateau glaciers, Nat. Commun., 10, 3281, 10.1038/s41467-019-10876-9
Gordon, 2014, Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles, Atmos. Chem. Phys., 14, 4661, 10.5194/acp-14-4661-2014
Megaritis, 2013, Response of fine particulate matter concentrations to changes of emissions and temperature in Europe, Atmos. Chem. Phys., 13, 3423, 10.5194/acp-13-3423-2013
Reddy, 2005, Estimates of global multicomponent aerosol optical depth and direct radiative perturbation in the Laboratoire de Météorologie Dynamique general circulation model, J. Geophys. Res. Atmos., 110, 10.1029/2004JD004757
Huang, 2014, High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218, 10.1038/nature13774
Klimont, 2002, Anthropogenic emissions of non-methane volatile organic compounds in China, Atmos. Environ., 36, 1309, 10.1016/S1352-2310(01)00529-5
Bouwman, 1997, A global high-resolution emission inventory for ammonia, Glob. Biogeochem. Cycles, 11, 561, 10.1029/97GB02266
Ramanathan, 2008, Global and regional climate changes due to black carbon, Nat. Geosci., 1, 221, 10.1038/ngeo156
Kanakidou, 2005, Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053, 10.5194/acp-5-1053-2005
Dai, 2014, Associations of fine particulate matter species with mortality in the United States: a multicity time-series analysis, Environ. Health Perspect., 122, 837, 10.1289/ehp.1307568
Meng, 2016, Potential health benefits of controlling dust emissions in Beijing, Environ. Pollut., 213, 850, 10.1016/j.envpol.2016.03.021
Meskhidze, 2005, Dust and pollution: a recipe for enhanced ocean fertilization?, J. Geophys. Res. Atmos., 110, 10.1029/2004JD005082
Chen, 2013, Demand-driven energy requirement of world economy 2007: a multi-region input-output network simulation, Commun. Nonlinear Sci., 18, 1757, 10.1016/j.cnsns.2012.11.004
Davis, 2010, Consumption-based accounting of CO2 emissions, Proc. Natl. Acad. Sci. USA, 107, 5687, 10.1073/pnas.0906974107
Wiedmann, 2015, The material footprint of nations, Proc. Natl. Acad. Sci. U S A, 112, 6271, 10.1073/pnas.1220362110
Lenzen, 2012, International trade drives biodiversity threats in developing nations, Nature, 486, 110, 10.1038/nature11145
Liang, 2015, Atmospheric mercury footprints of nations, Environ. Sci. Technol., 49, 3566, 10.1021/es503977y
Chen, 2012, Global network of embodied water flow by systems input-output simulation, Front Earth Sci., 6, 331, 10.1007/s11707-012-0305-3
Yu, 2013, Tele-connecting local consumption to global land use, Glob. Environ. Change, 23, 1178, 10.1016/j.gloenvcha.2013.04.006
Malik, 2016, Trends in global greenhouse gas emissions from 1990 to 2010, Environ. Sci. Technol., 50, 4722, 10.1021/acs.est.5b06162
Lan, 2016, A structural decomposition analysis of global energy footprints, Appl. Energy, 163, 436, 10.1016/j.apenergy.2015.10.178
Meng, 2015, Tracing primary PM2.5 emissions via Chinese supply chains, Environ. Res. Lett., 10, 054005, 10.1088/1748-9326/10/5/054005
Lei, 2008, Technology-based emission inventory of particulate matters (PM) from cement industry, Huan Jing Ke Xue, 29, 2366
Dalin, 2014, Water resources transfers through Chinese interprovincial and foreign food trade, Proc. Natl. Acad. Sci. U S A, 111, 9774, 10.1073/pnas.1404749111
Wiedenhofer, 2016, Unequal household carbon footprints in China, Nat. Clim. Change, 7, 75, 10.1038/nclimate3165
West, 2013, Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health, Nat. Clim. Change, 3, 885, 10.1038/nclimate2009
Minx, 2011, A “carbonizing dragon”: China’s fast growing CO2 emissions revisited, Environ. Sci. Technol., 45, 9144, 10.1021/es201497m
Peters, 2007, China's growing CO2 emissions a race between increasing consumption and efficiency gains, Environ. Sci. Technol., 41, 5939, 10.1021/es070108f
Guan, 2014, Determinants of stagnating carbon intensity in China, Nat. Clim. Change, 4, 1017, 10.1038/nclimate2388
Liu, 2017, How China achieved its 11th Five-Year Plan emissions reduction target: a structural decomposition analysis of industrial SO2 and chemical oxygen demand, Sci. Total Environ., 574, 1104, 10.1016/j.scitotenv.2016.08.176
2016
Liu, 2016, Air pollutant emissions from Chinese households: a major and underappreciated ambient pollution source, Proc. Natl. Acad. Sci. U S A, 113, 7756, 10.1073/pnas.1604537113
Frankel, 2005, Is trade good or bad for the environment? Sorting out the causality, Rev. Econ. Stat., 87, 85, 10.1162/0034653053327577
2014
Meng, 2018, The rise of South-South trade and its effect on global CO2 emissions, Nat. Commun., 9, 1871, 10.1038/s41467-018-04337-y
Kagawa, 2015, CO2 emission clusters within global supply chain networks: implications for climate change mitigation, Glob. Environ. Change, 35, 486, 10.1016/j.gloenvcha.2015.04.003
Wang, 2014, Exposure to ambient black carbon derived from a unique inventory and high-resolution model, Proc. Natl. Acad. Sci. U S A, 111, 2459, 10.1073/pnas.1318763111
Huang, 2015, Global organic carbon emissions from primary sources from 1960 to 2009, Atmos. Environ., 122, 505, 10.1016/j.atmosenv.2015.10.017
Huang, 2014, Quantification of global primary emissions of PM2.5, PM10, and TSP from combustion and industrial process sources, Environ. Sci. Technol., 48, 13834, 10.1021/es503696k
Zhang, 2007, Major components of China's anthropogenic primary particulate emissions, Environ. Res. Lett., 2, 045027, 10.1088/1748-9326/2/4/045027
Bo, 2008, Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China, Atmos. Chem. Phys., 8, 7297, 10.5194/acp-8-7297-2008
Holmengen, 2009
2016
Wang, 2013, High-resolution mapping of combustion processes and implications for CO2 emissions, Atmos. Chem. Phys., 13, 5189, 10.5194/acp-13-5189-2013
Leontief, 1970, Environmental repercussions and the economic structure: an input-output approach, Rev. Econ. Stat., 52, 262, 10.2307/1926294
Skelton, 2011, Mapping flows of embodied emissions in the global production system, Environ. Sci. Technol., 45, 10516, 10.1021/es202313e
Narayanan, 2012
Feng, 2012, Analyzing drivers of regional carbon dioxide emissions for China, J. Ind. Ecol., 16, 600, 10.1111/j.1530-9290.2012.00494.x
Miller, 2009
Dietzenbacher, 1998, Structural decomposition techniques: sense and sensitivity, Econ. Syst. Res., 10, 307, 10.1080/09535319800000023
Wiedmann, 2011, Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input-output analysis, Ecol. Econ., 70, 1937, 10.1016/j.ecolecon.2011.06.014
Peters, 2012, A synthesis of carbon in international trade, Biogeosciences, 9, 3247, 10.5194/bg-9-3247-2012
Lenzen, 2010, Uncertainty analysis for multi-region input–output models––a case study of the UK's carbon footprint, Econ. Syst. Res., 22, 43, 10.1080/09535311003661226
Oita, 2016, Substantial nitrogen pollution embedded in international trade, Nat. Geosci., 9, 111, 10.1038/ngeo2635
Nagashima, 2018, The sign reversal problem in structural decomposition analysis, Energy Econ., 72, 307, 10.1016/j.eneco.2018.04.027