The Singularity Theorems of General Relativity and Their Low Regularity Extensions

Roland Steinbauer1
1Faculty of Mathematics, University of Vienna, Wien, Austria

Tóm tắt

On the occasion of Sir Roger Penrose’s 2020 Nobel Prize in Physics, we review the singularity theorems of General Relativity, as well as their recent extension to Lorentzian metrics of low regularity. The latter is motivated by the quest to explore the nature of the singularities predicted by the classical theorems. Aiming at the more mathematically minded reader, we give a pedagogical introduction to the classical theorems with an emphasis on the analytical side of the arguments. We especially concentrate on focusing results for causal geodesics under appropriate geometric and initial conditions, in the smooth and in the low regularity case. The latter comprise the main technical advance that leads to the proofs of $C^{1}$ -singularity theorems via a regularisation approach that allows to deal with the distributional curvature. We close with an overview on related lines of research and a future outlook.

Từ khóa


Tài liệu tham khảo

Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965). https://doi.org/10.1103/PhysRevLett.14.57

Senovilla, J.M.M.: Singularity theorems in general relativity: achievements and open questions. In: Lehner, C., Renn, J., Matthias, S. (eds.) Einstein and the Changing Worldviews of Physics, pp. 305–315. Birkhäuser, New York (2012)

Senovilla, J.M.M.: A critical appraisal of the singularity theorems. arXiv:2108.07296 [gr-qc] (2021)

Landsman, K.: Singularities, black holes, and cosmic censorship: a tribute to Roger Penrose. Found. Phys. 51(2), 42 (2021). https://doi.org/10.1007/s10701-021-00432-1. With an appendix by Erik Curiel

Hawking, S.W.: The occurrence of singularities in cosmology. iii. Causality and singularities. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 300(1461), 187–201 (1967). https://doi.org/10.1098/rspa.1967.0164

Senovilla, J.M.M., Garfinkle, D.: The 1965 Penrose singularity theorem. Class. Quantum Gravity 32(12), 124008 (2015). https://doi.org/10.1088/0264-9381/32/12/124008

Hawking, S.W., Penrose, R.: The singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. Ser. A 314, 529–548 (1970). https://doi.org/10.1098/rspa.1970.0021

Penrose, R.: Techniques of Differential Topology in Relativity. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, vol. 7, p. 72. Society for Industrial and Applied Mathematics, Philadelphia (1972)

Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics, vol. 1, p. 391. Cambridge University Press, London/New York (1973).

Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry, 2nd edn. Monographs and Textbooks in Pure and Applied Mathematics, vol. 202, p. 635. Dekker, New York (1996)

O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Pure and Applied Mathematics, vol. 103, p. 468. Academic Press, New York (1983)

Clarke, C.J.S.: The Analysis of Space-Time Singularities. Cambridge Lecture Notes in Physics, vol. 1, p. 175. Cambridge University Press, Cambridge (1993)

Kriele, M.: Spacetime. Lecture Notes in Physics. New Series M: Monographs, vol. 59, p. 432. Springer, Berlin (1999). Foundations of general relativity and differential geometry

Senovilla, J.M.M.: Singularity theorems and their consequences. Gen. Relativ. Gravit. 30(5), 701–848 (1998). https://doi.org/10.1023/A:1018801101244

Morales Álvarez, P., Sánchez, M.: Myers and Hawking theorems: geometry for the limits of the universe. Milan J. Math. 83(2), 295–311 (2015). https://doi.org/10.1007/s00032-015-0241-2

Dafermos, M.: Penrose’s incompleteness theorem. Lond. Math. Soc. Newsl. 493, 27–34 (2021)

Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge Monographs on Mathematical Physics, p. 701. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/CBO9780511535185

Griffiths, J.B., Podolský, J.: Exact Space-Times in Einstein’s General Relativity. Cambridge Monographs on Mathematical Physics, p. 525. Cambridge University Press, Cambridge (2009). https://doi.org/10.1017/CBO9780511635397

Fourès-Bruhat, Y.: Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Math. 88, 141–225 (1952). https://doi.org/10.1007/BF02392131

Ringström, H.: Origins and development of the Cauchy problem in general relativity. Class. Quantum Gravity 32(12), 124003 (2015). https://doi.org/10.1088/0264-9381/32/12/124003

Baumgarte, T.W., Shapiro, S.L.: Numerical Relativity: Solving Einstein’s Equations on the Computer. Cambridge University Press, Cambridge (2010)

Abbott, B.P., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102. Authors include B. C. Barish, K. S. Thorne and R. Weiss

Bieri, L., Garfinkle, D., Yunes, N.: Gravitational waves and their mathematics. Not. Am. Math. Soc. 64(7), 693–707 (2017)

Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation, p. 1279. Freeman, San Francisco (1973)

Minguzzi, E., Sánchez, M.: The causal hierarchy of spacetimes. In: Recent Developments in Pseudo-Riemannian Geometry. ESI Lect. Math. Phys., pp. 299–358. Eur. Math. Soc., Zürich (2008). https://doi.org/10.4171/051-1/9. http://dx.doi.org/10.4171/051-1/9

Minguzzi, E.: Lorentzian causality theory. Living Rev. Relativ. 22(3), 220 (2019). https://doi.org/10.1007/s41114-019-0019-x

Chruściel, P.T.: Elements of causality theory (2011). arXiv:1110.6706 [gr-qc]

Bernal, A.N., Sánchez, M.: Globally hyperbolic spacetimes can be defined as ‘causal’ instead of ‘strongly causal’. Class. Quantum Gravity 24(3), 745–749 (2007). https://doi.org/10.1088/0264-9381/24/3/N01

Minguzzi, E.: Characterization of some causality conditions through the continuity of the Lorentzian distance. J. Geom. Phys. 59(7), 827–833 (2009). https://doi.org/10.1016/j.geomphys.2009.03.007

Hounnonkpe, R.A., Minguzzi, E.: Globally hyperbolic spacetimes can be defined without the ‘causal’ condition. Class. Quantum Gravity 36(19), 197001 (2019). https://doi.org/10.1088/1361-6382/ab3f11

Geroch, R.: What is a singularity in general relativity? Ann. Phys. 48(3), 526–540 (1968)

Ohanyan, A.: Geometric foundations of the classical singularity theorems. Master’s thesis, University of Vienna (2022)

Galloway, G.J., Senovilla, J.M.M.: Singularity theorems based on trapped submanifolds of arbitrary co-dimension. Class. Quantum Gravity 27(15), 152002 (2010). https://doi.org/10.1088/0264-9381/27/15/152002

Gannon, D.: Singularities in nonsimply connected space-times. J. Math. Phys. 16(12), 2364–2367 (1975). https://doi.org/10.1063/1.522498

Lee, C.W.: A restriction on the topology of Cauchy surfaces in general relativity. Commun. Math. Phys. 51(2), 157–162 (1976)

Kunzinger, M., Steinbauer, R., Stojković, M., Vickers, J.A.: Hawking’s singularity theorem for \(C^{1,1}\)-metrics. Class. Quantum Gravity 32(7), 075012 (2015). https://doi.org/10.1088/0264-9381/32/7/075012

Kunzinger, M., Steinbauer, R., Vickers, J.A.: The Penrose singularity theorem in regularity \(C^{1,1}\). Class. Quantum Gravity 32(15), 155010 (2015). https://doi.org/10.1088/0264-9381/32/15/155010

Graf, M., Grant, J.D.E., Kunzinger, M., Steinbauer, R.: The Hawking–Penrose singularity theorem for \(C^{1,1}\)-Lorentzian metrics. Commun. Math. Phys. 360(3), 1009–1042 (2018). https://doi.org/10.1007/s00220-017-3047-y

Graf, M.: Singularity theorems for \(C^{1}\)-Lorentzian metrics. Commun. Math. Phys. 378(2), 1417–1450 (2020). https://doi.org/10.1007/s00220-020-03808-y

Kunzinger, M., Ohanyan, A., Schinnerl, B., Steinbauer, R.: The Hawking–Penrose singularity theorem for \(C^{1}\)-Lorentzian metrics. Commun. Math. Phys. (2022, to appear). https://doi.org/10.1007/s00220-022-04335-8

Schinnerl, B., Steinbauer, R.: A note on the Gannon-Lee theorem. Lett. Math. Phys. 111(6), 142 (2021). https://doi.org/10.1007/s11005-021-01481-3

Minguzzi, E.: Causality theory for closed cone structures with applications. Rev. Math. Phys. 31(5), 1930001 (2019). https://doi.org/10.1142/S0129055X19300012

Grant, J.D.E., Kunzinger, M., Sämann, C.: Inextendibility of spacetimes and Lorentzian length spaces. Ann. Glob. Anal. Geom. 55(1), 133–147 (2019). https://doi.org/10.1007/s10455-018-9637-x

Cavalletti, F., Mondino, A.: Optimal transport in Lorentzian synthetic spaces, synthetic timelike Ricci curvature lower bounds and applications (2020) arXiv:2004.08934 [math.MG]

Oppenheimer, R.J., Snyder, H.: On continued gravitational contraction. Phys. Rev. (2) 56(5), 455–459 (1939)

Lichnerowicz, A.: Théories Relativistes de la Gravitation et de L’électromagnétisme. Relativité Générale et Théories Unitaires, p. 298. Masson et Cie, Paris (1955)

Israel, W.: Singular hypersurfaces and thin shells in general relativity. Il Nuovo Cimento B 44(1), 1–14 (1966). https://doi.org/10.1007/BF02710419

Mars, M., Senovilla, J.M.M.: Geometry of general hypersurfaces in spacetime: junction conditions. Class. Quantum Gravity 10(9), 1865–1897 (1993)

Geroch, R., Traschen, J.: Strings and other distributional sources in general relativity. Phys. Rev. D 36(4), 1017–1031 (1987)

LeFloch, P.G., Mardare, C.: Definition and stability of Lorentzian manifolds with distributional curvature. Port. Math. 64(4), 535–573 (2007). https://doi.org/10.4171/PM/1794

Steinbauer, R., Vickers, J.A.: On the Geroch-Traschen class of metrics. Class. Quantum Gravity 26(6), 065001 (2009). https://doi.org/10.1088/0264-9381/26/6/065001

Christodoulou, D.: The Formation of Black Holes in General Relativity. EMS Monographs in Mathematics, p. 589. Eur. Math. Soc., Zürich (2009). https://doi.org/10.4171/068

Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Mathematics and Its Applications (Soviet Series), vol. 18, p. 304. Kluwer Academic, Dordrecht (1988). https://doi.org/10.1007/978-94-015-7793-9

Steinbauer, R.: Every Lipschitz metric has \(C^{1}\)-geodesics. Class. Quantum Gravity 31(5), 057001 (2014). https://doi.org/10.1088/0264-9381/31/5/057001

Lange, C., Lytchak, A., Clemens, S.: Lorentz meets Lipschitz. Adv. Theor. Math. Phys. (2022, to appear). https://doi.org/10.4310/ATMP.2021.v25.n8.a4

Sbierski, J.: The \(C^{0}\)-inextendibility of the Schwarzschild spacetime and the spacelike diameter in Lorentzian geometry. J. Differ. Geom. 108(2), 319–378 (2018)

Heinzle, J.M., Steinbauer, R.: Remarks on the distributional Schwarzschild geometry. J. Math. Phys. 43(3), 1493–1508 (2002). https://doi.org/10.1063/1.1448684

Galloway, G.J., Ling, E., Sbierski, J.: Timelike completeness as an obstruction to \(C^{0}\)-extensions. Commun. Math. Phys. 359(3), 937–949 (2018). https://doi.org/10.1007/s00220-017-3019-2

Minguzzi, E.: Convex neighborhoods for Lipschitz connections and sprays. Monatshefte Math. 177(4), 569–625 (2015). https://doi.org/10.1007/s00605-014-0699-y

Kunzinger, M., Steinbauer, R., Stojković, M.: The exponential map of a \(C^{1,1}\)-metric. Differ. Geom. Appl. 34, 14–24 (2014). https://doi.org/10.1016/j.difgeo.2014.03.005

Hartman, P., Wintner, A.: On the problems of geodesics in the small. Am. J. Math. 73, 132–148 (1951)

Sämann, C., Steinbauer, R.: On geodesics in low regularity. J. Phys. Conf. Ser. 968(1), 012010 (2018)

Marsden, J.E.: Generalized Hamiltonian mechanics: a mathematical exposition of non-smooth dynamical systems and classical Hamiltonian mechanics. Arch. Ration. Mech. Anal. 28, 323–361 (1967/1968). https://doi.org/10.1007/BF00251661

Grosser, M., Kunzinger, M., Oberguggenberger, M., Steinbauer, R.: Geometric Theory of Generalized Functions with Applications to General Relativity. Mathematics and Its Applications, vol. 537, p. 505. Kluwer Academic, Dordrecht (2001). https://doi.org/10.1007/978-94-015-9845-3

Steinbauer, R.: A note on distributional semi-Riemannian geometry. Novi Sad J. Math. 38(3), 189–199 (2008)

Nigsch, E.A.: Bornologically isomorphic representations of distributions on manifolds. Monatshefte Math. 170(1), 49–63 (2013). https://doi.org/10.1007/s00605-012-0442-5

Fewster, C.J., Galloway, G.J.: Singularity theorems from weakened energy conditions. Class. Quantum Gravity 28(12), 125009 (2011). https://doi.org/10.1088/0264-9381/28/12/125009

Chruściel, P.T., Grant, J.D.E.: On Lorentzian causality with continuous metrics. Class. Quantum Gravity 29(14), 145001 (2012). https://doi.org/10.1088/0264-9381/29/14/145001

Hörmander, L.: The Analysis of Linear Partial Differential Operators. i. Classics in Mathematics, p. 440. Springer, Berlin (2003). https://doi.org/10.1007/978-3-642-61497-2. Distribution theory and Fourier analysis, Reprint of the second (1990) edition [Springer, Berlin]

Fathi, A., Siconolfi, A.: On smooth time functions. Math. Proc. Camb. Philos. Soc. 152(2), 303–339 (2012). https://doi.org/10.1017/S0305004111000661

Grant, J.D.E., Kunzinger, M., Sämann, C., Steinbauer, R.: The future is not always open. Lett. Math. Phys. 110(1), 83–103 (2020). https://doi.org/10.1007/s11005-019-01213-8

Kunzinger, M., Sämann, C.: Lorentzian length spaces. Ann. Glob. Anal. Geom. 54(3), 399–447 (2018). https://doi.org/10.1007/s10455-018-9633-1

Bernard, P., Suhr, S.: Lyapounov functions of closed cone fields: from Conley theory to time functions. Commun. Math. Phys. 359(2), 467–498 (2018). https://doi.org/10.1007/s00220-018-3127-7

Sämann, C.: Global hyperbolicity for spacetimes with continuous metrics. Ann. Henri Poincaré 17(6), 1429–1455 (2016). https://doi.org/10.1007/s00023-015-0425-x

Eschenburg, J.-H., Heintze, E.: Comparison theory for Riccati equations. Manuscr. Math. 68(2), 209–214 (1990). https://doi.org/10.1007/BF02568760

Shiohama, K.: An Introduction to the Geometry of Alexandrov Spaces. Lecture Notes Series, vol. 8, p. 78. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1993)

Villani, C.: Optimal Transport. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, p. 973. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-71050-9. Old and new

Hartman, P.: Ordinary Differential Equations. Classics in Applied Mathematics, vol. 38, p. 612. SIAM, Philadelphia (2002). https://doi.org/10.1137/1.9780898719222. Corrected reprint of the second (1982) edition [Birkhäuser, Boston; MR0658490 (83e:34002)], With a foreword by Peter Bates

Visser, M.: Lorentzian Wormholes. AIP Series in Computational and Applied Mathematical Physics, p. 412. Am. Inst. of Phys., Woodbury (1995). From Einstein to Hawking

Fewster, C.J., Kontou, E.-A.: A new derivation of singularity theorems with weakened energy hypotheses. Class. Quantum Gravity 37(6), 065010 (2020). https://doi.org/10.1088/1361-6382/ab685b

Fliss, J.R., Freivogel, B., Kontou, E.-A.: The double smeared null energy condition (2021). arXiv:2111.05772 [hep-th]

Graf, M., Kontou, E.-A., Ohanyan, A., Schinnerl, B.: Hawking-type singularity theorems for worldvolume energy inequalities (2022). arXiv:2209.04347 [gr-qc]

Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Graduate Studies in Mathematics, vol. 33, p. 415. Am. Math. Soc., Providence (2001). https://doi.org/10.1090/gsm/033

Aké Hau, L., Cabrera Pacheco, A.J., Solis, D.A.: On the causal hierarchy of Lorentzian length spaces. Class. Quantum Gravity 37(21), 215013 (2020). https://doi.org/10.1088/1361-6382/abb25f

Beran, T., Ohanyan, A., Rott, F., Solis, D.A.: The splitting theorem for globally hyperbolic Lorentzian length spaces with non-negative timelike curvature. (2022). arXiv:2209.14724 [math.DG]

Alexander, S.B., Graf, M., Kunzinger, M., Clemens, S.: Generalized cones as Lorentzian length spaces: causality, curvature, and singularity theorems. Commun. Anal. Geom. (2022, to appear). arXiv:1909.09575 [math.MG]

McCann, R.J.: Displacement convexity of Boltzmann’s entropy characterizes the strong energy condition from general relativity. Camb. J. Math. 8(3), 609–681 (2020). https://doi.org/10.4310/CJM.2020.v8.n3.a4

Mondino, A., Suhr, S.: An optimal transport formulation of the Einstein equations of general relativity. J. Eur. Math. Soc. (2022, to appear). https://doi.org/10.4171/JEMS/1188

Kunzinger, M., Oberguggenberger, M., Vickers, J.A.: Synthetic versus distributional lower Ricci curvature bounds (2022). arXiv:2207.03715 [math.DG]