The Singularity Theorems of General Relativity and Their Low Regularity Extensions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965). https://doi.org/10.1103/PhysRevLett.14.57
Senovilla, J.M.M.: Singularity theorems in general relativity: achievements and open questions. In: Lehner, C., Renn, J., Matthias, S. (eds.) Einstein and the Changing Worldviews of Physics, pp. 305–315. Birkhäuser, New York (2012)
Senovilla, J.M.M.: A critical appraisal of the singularity theorems. arXiv:2108.07296 [gr-qc] (2021)
Landsman, K.: Singularities, black holes, and cosmic censorship: a tribute to Roger Penrose. Found. Phys. 51(2), 42 (2021). https://doi.org/10.1007/s10701-021-00432-1. With an appendix by Erik Curiel
Hawking, S.W.: The occurrence of singularities in cosmology. iii. Causality and singularities. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 300(1461), 187–201 (1967). https://doi.org/10.1098/rspa.1967.0164
Senovilla, J.M.M., Garfinkle, D.: The 1965 Penrose singularity theorem. Class. Quantum Gravity 32(12), 124008 (2015). https://doi.org/10.1088/0264-9381/32/12/124008
Hawking, S.W., Penrose, R.: The singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. Ser. A 314, 529–548 (1970). https://doi.org/10.1098/rspa.1970.0021
Penrose, R.: Techniques of Differential Topology in Relativity. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, vol. 7, p. 72. Society for Industrial and Applied Mathematics, Philadelphia (1972)
Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics, vol. 1, p. 391. Cambridge University Press, London/New York (1973).
Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry, 2nd edn. Monographs and Textbooks in Pure and Applied Mathematics, vol. 202, p. 635. Dekker, New York (1996)
O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Pure and Applied Mathematics, vol. 103, p. 468. Academic Press, New York (1983)
Clarke, C.J.S.: The Analysis of Space-Time Singularities. Cambridge Lecture Notes in Physics, vol. 1, p. 175. Cambridge University Press, Cambridge (1993)
Kriele, M.: Spacetime. Lecture Notes in Physics. New Series M: Monographs, vol. 59, p. 432. Springer, Berlin (1999). Foundations of general relativity and differential geometry
Senovilla, J.M.M.: Singularity theorems and their consequences. Gen. Relativ. Gravit. 30(5), 701–848 (1998). https://doi.org/10.1023/A:1018801101244
Morales Álvarez, P., Sánchez, M.: Myers and Hawking theorems: geometry for the limits of the universe. Milan J. Math. 83(2), 295–311 (2015). https://doi.org/10.1007/s00032-015-0241-2
Dafermos, M.: Penrose’s incompleteness theorem. Lond. Math. Soc. Newsl. 493, 27–34 (2021)
Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge Monographs on Mathematical Physics, p. 701. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/CBO9780511535185
Griffiths, J.B., Podolský, J.: Exact Space-Times in Einstein’s General Relativity. Cambridge Monographs on Mathematical Physics, p. 525. Cambridge University Press, Cambridge (2009). https://doi.org/10.1017/CBO9780511635397
Fourès-Bruhat, Y.: Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Math. 88, 141–225 (1952). https://doi.org/10.1007/BF02392131
Ringström, H.: Origins and development of the Cauchy problem in general relativity. Class. Quantum Gravity 32(12), 124003 (2015). https://doi.org/10.1088/0264-9381/32/12/124003
Baumgarte, T.W., Shapiro, S.L.: Numerical Relativity: Solving Einstein’s Equations on the Computer. Cambridge University Press, Cambridge (2010)
Abbott, B.P., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102. Authors include B. C. Barish, K. S. Thorne and R. Weiss
Bieri, L., Garfinkle, D., Yunes, N.: Gravitational waves and their mathematics. Not. Am. Math. Soc. 64(7), 693–707 (2017)
Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation, p. 1279. Freeman, San Francisco (1973)
Minguzzi, E., Sánchez, M.: The causal hierarchy of spacetimes. In: Recent Developments in Pseudo-Riemannian Geometry. ESI Lect. Math. Phys., pp. 299–358. Eur. Math. Soc., Zürich (2008). https://doi.org/10.4171/051-1/9. http://dx.doi.org/10.4171/051-1/9
Minguzzi, E.: Lorentzian causality theory. Living Rev. Relativ. 22(3), 220 (2019). https://doi.org/10.1007/s41114-019-0019-x
Chruściel, P.T.: Elements of causality theory (2011). arXiv:1110.6706 [gr-qc]
Bernal, A.N., Sánchez, M.: Globally hyperbolic spacetimes can be defined as ‘causal’ instead of ‘strongly causal’. Class. Quantum Gravity 24(3), 745–749 (2007). https://doi.org/10.1088/0264-9381/24/3/N01
Minguzzi, E.: Characterization of some causality conditions through the continuity of the Lorentzian distance. J. Geom. Phys. 59(7), 827–833 (2009). https://doi.org/10.1016/j.geomphys.2009.03.007
Hounnonkpe, R.A., Minguzzi, E.: Globally hyperbolic spacetimes can be defined without the ‘causal’ condition. Class. Quantum Gravity 36(19), 197001 (2019). https://doi.org/10.1088/1361-6382/ab3f11
Geroch, R.: What is a singularity in general relativity? Ann. Phys. 48(3), 526–540 (1968)
Ohanyan, A.: Geometric foundations of the classical singularity theorems. Master’s thesis, University of Vienna (2022)
Galloway, G.J., Senovilla, J.M.M.: Singularity theorems based on trapped submanifolds of arbitrary co-dimension. Class. Quantum Gravity 27(15), 152002 (2010). https://doi.org/10.1088/0264-9381/27/15/152002
Gannon, D.: Singularities in nonsimply connected space-times. J. Math. Phys. 16(12), 2364–2367 (1975). https://doi.org/10.1063/1.522498
Lee, C.W.: A restriction on the topology of Cauchy surfaces in general relativity. Commun. Math. Phys. 51(2), 157–162 (1976)
Kunzinger, M., Steinbauer, R., Stojković, M., Vickers, J.A.: Hawking’s singularity theorem for \(C^{1,1}\)-metrics. Class. Quantum Gravity 32(7), 075012 (2015). https://doi.org/10.1088/0264-9381/32/7/075012
Kunzinger, M., Steinbauer, R., Vickers, J.A.: The Penrose singularity theorem in regularity \(C^{1,1}\). Class. Quantum Gravity 32(15), 155010 (2015). https://doi.org/10.1088/0264-9381/32/15/155010
Graf, M., Grant, J.D.E., Kunzinger, M., Steinbauer, R.: The Hawking–Penrose singularity theorem for \(C^{1,1}\)-Lorentzian metrics. Commun. Math. Phys. 360(3), 1009–1042 (2018). https://doi.org/10.1007/s00220-017-3047-y
Graf, M.: Singularity theorems for \(C^{1}\)-Lorentzian metrics. Commun. Math. Phys. 378(2), 1417–1450 (2020). https://doi.org/10.1007/s00220-020-03808-y
Kunzinger, M., Ohanyan, A., Schinnerl, B., Steinbauer, R.: The Hawking–Penrose singularity theorem for \(C^{1}\)-Lorentzian metrics. Commun. Math. Phys. (2022, to appear). https://doi.org/10.1007/s00220-022-04335-8
Schinnerl, B., Steinbauer, R.: A note on the Gannon-Lee theorem. Lett. Math. Phys. 111(6), 142 (2021). https://doi.org/10.1007/s11005-021-01481-3
Minguzzi, E.: Causality theory for closed cone structures with applications. Rev. Math. Phys. 31(5), 1930001 (2019). https://doi.org/10.1142/S0129055X19300012
Grant, J.D.E., Kunzinger, M., Sämann, C.: Inextendibility of spacetimes and Lorentzian length spaces. Ann. Glob. Anal. Geom. 55(1), 133–147 (2019). https://doi.org/10.1007/s10455-018-9637-x
Cavalletti, F., Mondino, A.: Optimal transport in Lorentzian synthetic spaces, synthetic timelike Ricci curvature lower bounds and applications (2020) arXiv:2004.08934 [math.MG]
Oppenheimer, R.J., Snyder, H.: On continued gravitational contraction. Phys. Rev. (2) 56(5), 455–459 (1939)
Lichnerowicz, A.: Théories Relativistes de la Gravitation et de L’électromagnétisme. Relativité Générale et Théories Unitaires, p. 298. Masson et Cie, Paris (1955)
Israel, W.: Singular hypersurfaces and thin shells in general relativity. Il Nuovo Cimento B 44(1), 1–14 (1966). https://doi.org/10.1007/BF02710419
Mars, M., Senovilla, J.M.M.: Geometry of general hypersurfaces in spacetime: junction conditions. Class. Quantum Gravity 10(9), 1865–1897 (1993)
Geroch, R., Traschen, J.: Strings and other distributional sources in general relativity. Phys. Rev. D 36(4), 1017–1031 (1987)
LeFloch, P.G., Mardare, C.: Definition and stability of Lorentzian manifolds with distributional curvature. Port. Math. 64(4), 535–573 (2007). https://doi.org/10.4171/PM/1794
Steinbauer, R., Vickers, J.A.: On the Geroch-Traschen class of metrics. Class. Quantum Gravity 26(6), 065001 (2009). https://doi.org/10.1088/0264-9381/26/6/065001
Christodoulou, D.: The Formation of Black Holes in General Relativity. EMS Monographs in Mathematics, p. 589. Eur. Math. Soc., Zürich (2009). https://doi.org/10.4171/068
Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Mathematics and Its Applications (Soviet Series), vol. 18, p. 304. Kluwer Academic, Dordrecht (1988). https://doi.org/10.1007/978-94-015-7793-9
Steinbauer, R.: Every Lipschitz metric has \(C^{1}\)-geodesics. Class. Quantum Gravity 31(5), 057001 (2014). https://doi.org/10.1088/0264-9381/31/5/057001
Lange, C., Lytchak, A., Clemens, S.: Lorentz meets Lipschitz. Adv. Theor. Math. Phys. (2022, to appear). https://doi.org/10.4310/ATMP.2021.v25.n8.a4
Sbierski, J.: The \(C^{0}\)-inextendibility of the Schwarzschild spacetime and the spacelike diameter in Lorentzian geometry. J. Differ. Geom. 108(2), 319–378 (2018)
Heinzle, J.M., Steinbauer, R.: Remarks on the distributional Schwarzschild geometry. J. Math. Phys. 43(3), 1493–1508 (2002). https://doi.org/10.1063/1.1448684
Galloway, G.J., Ling, E., Sbierski, J.: Timelike completeness as an obstruction to \(C^{0}\)-extensions. Commun. Math. Phys. 359(3), 937–949 (2018). https://doi.org/10.1007/s00220-017-3019-2
Minguzzi, E.: Convex neighborhoods for Lipschitz connections and sprays. Monatshefte Math. 177(4), 569–625 (2015). https://doi.org/10.1007/s00605-014-0699-y
Kunzinger, M., Steinbauer, R., Stojković, M.: The exponential map of a \(C^{1,1}\)-metric. Differ. Geom. Appl. 34, 14–24 (2014). https://doi.org/10.1016/j.difgeo.2014.03.005
Hartman, P., Wintner, A.: On the problems of geodesics in the small. Am. J. Math. 73, 132–148 (1951)
Sämann, C., Steinbauer, R.: On geodesics in low regularity. J. Phys. Conf. Ser. 968(1), 012010 (2018)
Marsden, J.E.: Generalized Hamiltonian mechanics: a mathematical exposition of non-smooth dynamical systems and classical Hamiltonian mechanics. Arch. Ration. Mech. Anal. 28, 323–361 (1967/1968). https://doi.org/10.1007/BF00251661
Grosser, M., Kunzinger, M., Oberguggenberger, M., Steinbauer, R.: Geometric Theory of Generalized Functions with Applications to General Relativity. Mathematics and Its Applications, vol. 537, p. 505. Kluwer Academic, Dordrecht (2001). https://doi.org/10.1007/978-94-015-9845-3
Steinbauer, R.: A note on distributional semi-Riemannian geometry. Novi Sad J. Math. 38(3), 189–199 (2008)
Nigsch, E.A.: Bornologically isomorphic representations of distributions on manifolds. Monatshefte Math. 170(1), 49–63 (2013). https://doi.org/10.1007/s00605-012-0442-5
Fewster, C.J., Galloway, G.J.: Singularity theorems from weakened energy conditions. Class. Quantum Gravity 28(12), 125009 (2011). https://doi.org/10.1088/0264-9381/28/12/125009
Chruściel, P.T., Grant, J.D.E.: On Lorentzian causality with continuous metrics. Class. Quantum Gravity 29(14), 145001 (2012). https://doi.org/10.1088/0264-9381/29/14/145001
Hörmander, L.: The Analysis of Linear Partial Differential Operators. i. Classics in Mathematics, p. 440. Springer, Berlin (2003). https://doi.org/10.1007/978-3-642-61497-2. Distribution theory and Fourier analysis, Reprint of the second (1990) edition [Springer, Berlin]
Fathi, A., Siconolfi, A.: On smooth time functions. Math. Proc. Camb. Philos. Soc. 152(2), 303–339 (2012). https://doi.org/10.1017/S0305004111000661
Grant, J.D.E., Kunzinger, M., Sämann, C., Steinbauer, R.: The future is not always open. Lett. Math. Phys. 110(1), 83–103 (2020). https://doi.org/10.1007/s11005-019-01213-8
Kunzinger, M., Sämann, C.: Lorentzian length spaces. Ann. Glob. Anal. Geom. 54(3), 399–447 (2018). https://doi.org/10.1007/s10455-018-9633-1
Bernard, P., Suhr, S.: Lyapounov functions of closed cone fields: from Conley theory to time functions. Commun. Math. Phys. 359(2), 467–498 (2018). https://doi.org/10.1007/s00220-018-3127-7
Sämann, C.: Global hyperbolicity for spacetimes with continuous metrics. Ann. Henri Poincaré 17(6), 1429–1455 (2016). https://doi.org/10.1007/s00023-015-0425-x
Eschenburg, J.-H., Heintze, E.: Comparison theory for Riccati equations. Manuscr. Math. 68(2), 209–214 (1990). https://doi.org/10.1007/BF02568760
Shiohama, K.: An Introduction to the Geometry of Alexandrov Spaces. Lecture Notes Series, vol. 8, p. 78. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1993)
Villani, C.: Optimal Transport. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, p. 973. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-71050-9. Old and new
Hartman, P.: Ordinary Differential Equations. Classics in Applied Mathematics, vol. 38, p. 612. SIAM, Philadelphia (2002). https://doi.org/10.1137/1.9780898719222. Corrected reprint of the second (1982) edition [Birkhäuser, Boston; MR0658490 (83e:34002)], With a foreword by Peter Bates
Visser, M.: Lorentzian Wormholes. AIP Series in Computational and Applied Mathematical Physics, p. 412. Am. Inst. of Phys., Woodbury (1995). From Einstein to Hawking
Fewster, C.J., Kontou, E.-A.: A new derivation of singularity theorems with weakened energy hypotheses. Class. Quantum Gravity 37(6), 065010 (2020). https://doi.org/10.1088/1361-6382/ab685b
Fliss, J.R., Freivogel, B., Kontou, E.-A.: The double smeared null energy condition (2021). arXiv:2111.05772 [hep-th]
Graf, M., Kontou, E.-A., Ohanyan, A., Schinnerl, B.: Hawking-type singularity theorems for worldvolume energy inequalities (2022). arXiv:2209.04347 [gr-qc]
Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Graduate Studies in Mathematics, vol. 33, p. 415. Am. Math. Soc., Providence (2001). https://doi.org/10.1090/gsm/033
Aké Hau, L., Cabrera Pacheco, A.J., Solis, D.A.: On the causal hierarchy of Lorentzian length spaces. Class. Quantum Gravity 37(21), 215013 (2020). https://doi.org/10.1088/1361-6382/abb25f
Beran, T., Ohanyan, A., Rott, F., Solis, D.A.: The splitting theorem for globally hyperbolic Lorentzian length spaces with non-negative timelike curvature. (2022). arXiv:2209.14724 [math.DG]
Alexander, S.B., Graf, M., Kunzinger, M., Clemens, S.: Generalized cones as Lorentzian length spaces: causality, curvature, and singularity theorems. Commun. Anal. Geom. (2022, to appear). arXiv:1909.09575 [math.MG]
McCann, R.J.: Displacement convexity of Boltzmann’s entropy characterizes the strong energy condition from general relativity. Camb. J. Math. 8(3), 609–681 (2020). https://doi.org/10.4310/CJM.2020.v8.n3.a4
Mondino, A., Suhr, S.: An optimal transport formulation of the Einstein equations of general relativity. J. Eur. Math. Soc. (2022, to appear). https://doi.org/10.4171/JEMS/1188
Kunzinger, M., Oberguggenberger, M., Vickers, J.A.: Synthetic versus distributional lower Ricci curvature bounds (2022). arXiv:2207.03715 [math.DG]