Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Mô Phỏng Sự Tiến Hóa Của Sự Kết Tủa Và Tính Chất Cơ Học Trong Hàn Trộn Ma Sát Kèm Theo Xử Lý Nhiệt Sau Hàn
Tóm tắt
Một mô hình phần tử hữu hạn của hàn trộn ma sát có khả năng tái lưới được sử dụng để mô phỏng sự biến thiên nhiệt độ. Việc tái lưới mô hình phần tử hữu hạn được sử dụng để duy trì một lưới tinh vi giải quyết các gradient của nghiệm. Mô hình số Kampmann–Wagner cho sự kết tủa sau đó được sử dụng để nghiên cứu mối quan hệ giữa các mối hàn trộn ma sát với xử lý nhiệt sau hàn (PWHT) và các thay đổi trong tính chất cơ học. Kết quả cho thấy rằng thời gian giữ PWHT và nhiệt độ giữ PWHT cần được thiết kế một cách tối ưu để đạt được các mối hàn trộn ma sát với tính chất cơ học tốt hơn. Số lượng kết tủa lớn hơn với kích thước kết tủa nhỏ hơn mang lại độ bền cao hơn trong vùng khuấy trộn sau PWHT. Sự thô ráp của các kết tủa trong vùng ảnh hưởng nhiệt (HAZ) là lý do chính cản trở việc cải thiện tính chất cơ học khi sử dụng PWHT.
Từ khóa
#hàn trộn ma sát #xử lý nhiệt sau hàn #mô hình phần tử hữu hạn #kết tủa #tính chất cơ họcTài liệu tham khảo
D. Lohwasser and Z. Chen, Friction Stir Welding: From Basics to Applications, Woodhead Publishing, Sawston, 2010
F.F. Wang, W.Y. Li, J. Shen, Z.H. Zhang, J.L. Li, and J.F. dos Santos, Global and Local Mechanical Properties and Microstructure of Bobbin Tool Friction-Stir-Welded Al-Li Alloy, Sci. Technol. Weld. Joining, 2016, 21, p 479–483
P.L. Threadgill, A.J. Leonard, H.R. Shercliff, and P.J. Withers, Friction Stir Welding of Aluminium Alloys, Int. Mater. Rev., 2009, 54, p 49–53
L. Commin, M. Dumont, J.E. Masse, and L. Barrallier, Friction Stir Welding of AZ31 Magnesium Alloy Rolled Sheets: Influence of Processing Parameters, Acta Mater., 2009, 57, p 326–334
S. Palanivel, A. Arora, K.J. Doherty, and R.S. Mishra, A Framework for Shear Driven Dissolution of Thermally Stable Particles During Friction Stir Welding and Processing, Mater. Sci. Eng. A, 2016, 678, p 308–314
S. Mironov, T. Onuma, Y.S. Sato, S. Yoneyama, and H. Kokawa, Tensile Behavior of Friction-Stir Welded AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2017, 679, p 272–281
S. Yoon, R. Ueji, and H. Fujii, Effect of Rotation Rate on Microstructure and Texture Evolution During Friction Stir Welding of Ti-6Al-4 V Plates, Mater. Charact., 2015, 106, p 352–358
L.H. Wu, B.L. Xiao, D.R. Ni, Z.Y. Ma, X.H. Li, M.J. Fu, and Y.S. Zeng, Achieving Superior Superplasticity from Lamellar Microstructure of a Nugget in a Friction-Stir-Welded Ti-6Al-4 V Joint, Scr. Mater., 2015, 98, p 44–47
J.J. Shen, H.J. Liu, and F. Cui, Effect of Welding Speed on Microstructure and Mechanical Properties of Friction Stir Welded Copper, Mater. Des., 2010, 31, p 3937–3942
T. Sakthivel and J. Mukhopadhyay, Microstructure and Mechanical Properties of Friction Stir Welded Copper, J. Mater. Sci., 2007, 42, p 8126–8129
A. De, H.K.D.H. Bhadeshia, and T. DebRoy, Friction Stir Welding of Mild Steel: Tool Durability and Steel Microstructure, Mater. Sci. Technol., 2014, 30, p 1050–1056
MdM Husain, R. Sarkar, T.K. Pal, N. Prabhu, and M. Ghosh, Friction Stir Welding of Steel: Heat Input, Microstructure, and Mechanical Property Co-relation, J. Mater. Eng. Perform., 2015, 24, p 3673–3683
H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakat, and K. Nogi, Friction Stir Welding of Carbon Steels, Mater. Sci. Eng., A, 2006, 429, p 50–57
M.B. Prime, T. Gnäupel-Herold, J.A. Baumann, R.J. Lederich, D.M. Bowden, and R.J. Sebring, Residual Stress Measurements in a Thick, Dissimilar Aluminum Alloy Friction Stir Weld, Acta Mater., 2006, 54, p 4013–4021
W.B. Lee, Y.M. Yeon, and S.B. Jung, The Joint Properties of Dissimilar Formed Al Alloys by Friction Stir Welding According to the Fixed Location of Materials, Scr. Mater., 2003, 49, p 423–428
U. Donatus, G.E. Thompson, and X. Zhou, Effect of Prior Sputter Deposition of Pure Aluminium on the Corrosion Behaviour of Anodized Friction Stir Weld of Dissimilar Aluminium Alloys, Scr. Mater., 2016, 123, p 126–129
R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, Recent Advances in Friction-Stir Welding—Process, Weldment Structure and Properties, Prog. Mater Sci., 2008, 53, p 980–1023
X.C. He, F.S. Gu, and A. Ball, A Review of Numerical Analysis of Friction Stir Welding, Prog. Mater Sci., 2014, 65, p 1–66
R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee, High Strain Rate Superplasticity in a Friction Stir Processed 7075 Al Alloy, Scr. Mater., 1999, 42, p 163–168
Z.Y. Ma, R.S. Mishra, and M.W. Mahoney, Superplastic Deformation Behaviour of Friction Stir Processed 7075Al Alloy, Acta Mater, 2002, 50, p 4419–4430
Z. Zhang and Q. Wu, Numerical Studies of Tool Diameter on Strain Rates, Temperature Rises and Grain Sizes in Friction Stir Welding, J. Mech. Sci. Technol., 2015, 29, p 4121–4128
H. Schmidt and J. Hattel, A Local Model for the Thermomechanical Conditions in Friction Stir Welding, Model. Simul. Mater. Sci. Eng., 2005, 13, p 77–93
A. Gerlich, G. Avramovic-Cingara, and T.H. North, Stir Zone Microstructure and Strain Rate During Al 7075-T6 Friction Stir Spot Welding, Metal. Mater. Trans. A, 2006, 37, p 2773–2786
M. Ghosh, K. Kumar, and R.S. Mishra, Analysis of Microstructural Evolution During Friction Stir Welding of Ultrahigh-Strength Steel, Scr. Mater., 2010, 63, p 851–854
S. Sabooni, F. Karimzadeh, M.H. Enayati, A.H.W. Ngan, and H. Jabbari, Gas Tungsten Arc Welding and Friction Stir Welding of Ultrafine Grained AISI, 304L Stainless Steel: Microstructural and Mechanical Behavior Characterization, Mater. Charact., 2015, 109, p 138–151
J.Y. Sheikh-Ahmad, F. Ozturk, F. Jarrar, and Z. Evis, Thermal History and Microstructure During Friction Stir Welding of Al-Mg Alloy, Int. J. Adv. Manuf. Technol., 2016, 86, p 1071–1081
J.S. Liao, N. Yamamoto, and K. Nakata, Effect of Dispersed Intermetallic Particles on Microstructural Evolution in the Friction Stir Weld of a Fine-Grained Magnesium Alloy, Metal. Mater. Trans. A, 2009, 40, p 2212–2219
Z. Yang, S. Sista, J.W. Elmer, and T. DebRoy, Three Dimensional Monte Carlo Simulation of Grain Growth During GTA Welding of Titanium, Acta Mater., 2000, 48, p 4813–4825
S. Sista, Z. Yang, and T. DebRoy, Three-Dimensional Monte Carlo Simulation of Grain Growth in the Heat-Affected Zone of a 2.25Cr-1Mo Steel Weld, Metal. Mater. Trans. B, 2000, 31, p 529–536
S. Sista and T. DebRoy, Three-Dimensional Monte Carlo Simulation of Grain Growth in Zone-Refined Iron, Metal. Mater. Trans. B, 2001, 32, p 1195–1201
S. Mishra and T. DebRoy, Measurements and Monte Carlo Simulation of Grain Growth in the Heat-Affected Zone of Ti-6Al-4 V Welds, Acta Mater., 2004, 52, p 1183–1192
Q. Wu and Z. Zhang, Precipitation Induced Grain Growth Simulation in Friction Stir Welding, J. Mater. Eng. Perform., 2017, 26(5), p 2179–2189
Z. Zhang, Q. Wu, M. Grujicic, and Z.Y. Wan, Monte Carlo Simulation of Grain Growth and Welding Zones in Friction Stir Welding of AA6082-T6, J. Mater. Sci., 2016, 51, p 1882–1895
M. Grujicic, S. Ramaswami, J.S. Snipes, V. Avuthu, R. Galgalikar, and Z. Zhang, Prediction of the Grain-Microstructure Evolution Within a Friction Stir Welding (FSW) Joint Via the Use of the Monte Carlo Simulation Method, J. Mater. Eng. Perform., 2015, 24, p 3471–3486
Z.Y. Wan, Z. Zhang, and X. Zhou, Finite Element Modelling of Grain Growth by Point Tracking Method in Friction Stir Welding of AA6082-T6, Int. J. Adv. Manuf. Technol., 2017, 90(9), p 3567–3574
A. Simar, Y. Bréchet, B. de Meester, A. Denquin, and T. Pardoen, Sequential Modeling of Local Precipitation, Strength and Strain Hardening in Friction Stir Welds of an Aluminum Alloy 6005A-T6, Acta Mater., 2007, 55, p 6133–6143
C. Genevois, A. Deschamps, A. Denquin, and B. Doisneau-cottignies, Quantitative Investigation of Precipitation and Mechanical Behaviour for AA2024 Friction Stir Welds, Acta Mater., 2005, 53, p 2447–2458
H.R. Shercliff and M.F. Ashby, A Process Model for Age Hardening of Aluminium Alloys, Acta Metall. Mater., 1990, 38(10), p 1789–1812
O.R. Myhr and Ø. Grong, Process Modelling Applied to 6082-T6 Aluminium Weldments, Acta Metall. Mater., 1991, 39, p 2693–2708
H.R. Shercliff, M.J. Russell, A. Taylor, and T.L. Dickson, Microstructural Modelling in Friction Stir Welding of 2000 Series Aluminium Alloys, Mec. Ind., 2005, 6, p 25–35
J.D. Robson, N. Kamp, and N.A. Sulliva, Microstructural Modelling for Friction Stir Welding of Aluminium Alloys, Mater. Manuf. Process., 2007, 22(4), p 450–456
O.R. Myhr and Ø. Grong, Modelling of Non-isothermal Transformations in Alloys Containing a Particle Distribution, Acta Mater., 2000, 48, p 1605–1615
R. Wagner and R. Kampmann, Materials Science and Technology—A Comprehensive Treatment, Wiley-VCH, Weinhem, 1991
L.-E. Lindgren, A. Lundbäck, and M. Fisk, Thermo-Mechanics and Microstructure Evolution in Manufacturing Simulations, J. Therm. Stresses, 2013, 36(6), p 564–588
L.-E. Lindgren, A. Lundbäck, M. Fisk, R. Pederson, and J. Andersson, Simulation of Additive Manufacturing Using Coupled Constitutive and Microstructure Models, Addit. Manuf., 2016, 12, p 144–158
B. Lia, Y.F. Shen, L. Luo, and W.Y. Hu, Effects of Processing Variables and Heat Treatments on Al/Ti-6Al-4 V Interface Microstructure of Bimetal Clad-Plate Fabricated Via a Novel Route Employing Friction Stir Lap Welding, J. Alloy. Compd., 2016, 658, p 904–913
H. Sidhar and R.S. Mishra, Aging Kinetics of Friction Stir Welded Al-Cu-Li-Mg-Ag and Al-Cu-Li-Mg Alloys, Mater. Des., 2016, 110, p 60–71
M.N. Avettand-Fènoël and R. Taillard, Effect of a Pre or Postweld Heat Treatment on Microstructure and Mechanical Properties of an AA2050 Weld Obtained by SSFSW, Mater. Des., 2016, 89, p 348–361
R. Citarella, P. Carlone, M. Lepore, and R. Sepe, Hybrid Technique to Assess the Fatigue Performance of Multiple Cracked FSW Joints, Eng. Fract. Mech., 2016, 162, p 38–50
P. Carlone, R. Citarella, M.R. Sonne, and J.H. Hattel, Multiple Crack Growth Prediction in AA2024-T3 Friction Stir Welded Joints, Including Manufacturing Effects, Int. J. Fatigue, 2016, 90, p 69–77
M.R. Sonne, C.C. Tutum, J.H. Hattel, A. Simar, and B.D. Meester, The Effect of Hardening Laws and Thermal Softening on Modeling Residual Stresses in FSW of Aluminum Alloy 2024-T3, J. Mater. Process. Technol., 2013, 213(3), p 477–486
Z. Zhang, P. Ge, and G.Z. Zhao, Numerical Studies of Post Weld Heat Treatment on Residual Stresses in Welded Impeller, Int. J. Press. Vessels Pip., 2017, 153, p 1–14
Z.W. Zhang, Z. Zhang, and H.W. Zhang, Effect of Residual Stress of Friction Stir Welding on Fatigue Life of AA 2024-T351 Joint, Proceed. Inst. Mech. Eng. Part B J. Eng. Manuf., 2015, 229(11), p 2021–2034
Z. Zhang and H.W. Zhang, Numerical Studies of Pre-Heating Time Effect on Temperature and Material Behaviors in Friction Stir Welding Process, Sci. Technol. Weld. Joining, 2007, 12(5), p 436–448
Z. Zhang and J.T. Chen, Computational Investigations on Reliable Finite Element Based Thermo-Mechanical Coupled Simulations of Friction Stir Welding, Int. J. Adv. Manuf. Technol., 2012, 60, p 959–975
Z. Zhang and H.W. Zhang, Solid Mechanics-Based Eulerian Model of Friction Stir Welding, Int. J. Adv. Manuf. Technol., 2014, 72, p 1647–1653
G. Buffa, J. Hua, R. Shivpuri et al., A Continuum Based Fem Model for Friction Stir Welding—Model Development, Mater. Sci. Eng. A, 2006, 419(1), p 389–396
O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu, Finite Element Method: Its Basis and Fundamentals, 6th ed., Elsevier Pre Ltd, Singapore, 2008
O.C. Zienkiewicz and J.Z. Zhu, A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis, Int. J. Numer. Methods Eng., 1987, 24(2), p 337–357
DEFORM 3D, V6.1 User’s Manual, SFC, Columbus, 2007
D. Carron, P. Bastid, Y. Yin, and R.G. Faulkner, Modelling of Precipitation During Friction Stir Welding of an Al-Mg-Si Alloy, Tech. Mech., 2010, 30(1-3), p 29–44
O.R. Myhr, Ø. Grong, and S.J. Andersen, Modelling of the Age Hardening Behaviour of Al-Mg-Si Alloys, Acta Mater., 2001, 49(1), p 65–75
D. Umbrello, J. Hua, and R. Shivpuri, Hardness-Based Flow Stress and Fracture Models for Numerical Simulation of Hard Machining AISI, 52100 Bearing Steel, Mater. Sci. Eng. A, 2004, 374, p 90–100
M.Y. He, G.R. Odette, T. Yamamoto, and D. Klingensmith, A Universal Relationship Between Indentation Hardness and Flow Stress, J. Nucl. Mater., 2007, 367-370, p 556–560
O.R. Myhr, Ø. Grong, H.G. Fjær, and C.D. Marioara, Modelling of the Microstructure and Strength Evolution in Al-Mg-Si Alloys During Multistage Thermal Processing, Acta Mater., 2004, 52, p 4997–5008
Z. Zhang and Z.Y. Wan, Predictions of Tool Forces in Friction Stir Welding of AZ91 Magnesium Alloy, Sci. Technol. Weld. Join, 2012, 17(6), p 495–500