The Simons Observatory: science goals and forecasts

Journal of Cosmology and Astroparticle Physics - Tập 2019 Số 02 - Trang 056-056 - 2019
P. A. R. Ade, James E. Aguirre, Zeeshan Ahmed, Simone Aiola, Aamir Ali, David Alonso, Marcelo A. Alvarez, Kam Arnold, Peter Ashton, J. E. Austermann, Humna Awan, Carlo Baccigalupi, Taylor Baildon, Darcy Barron, Nicholas Battaglia, Richard A. Battye, E. Baxter, A. O. Bazarko, James A. Beall, Rachel Bean, S. Beckman1, Shawn Beckman, Benjamin Beringue, F. Bianchini, Steven Boada, D. Boettger, J. Richard Bond, Julian Borrill, Michael L. Brown, Sarah Marie Bruno, Sean Bryan, Erminia Calabrese, Victoria Calafut, P. G. Calisse, Julien Carron, A. Chamballu, Grace E. Chesmore, Y. Chinone, Jens Chluba, Hsiao-Mei Sherry Cho, Steve K. Choi, Gabriele Coppi, Nicholas F. Cothard, Kevin Coughlin, Devin Crichton, Kevin D. Crowley, Kevin T. Crowley, A. Cukierman, Mitch D`ewart, Rolando Dünner, T. de Haan, Mark J. Devlin, Simon Dicker, Joy Didier, M. Dobbs, Bradley Dober, Cody J. Duell, Shannon M. Duff, Adriaan J. Duivenvoorden, Jo Dunkley, John Dusatko, Josquin Errard1, Giulio Fabbian2, Stephen M. Feeney, Simone Ferraro, Pedro Fluxá, Katherine Freese, J. Frisch, Andrei V. Frolov, George M. Fuller, Brittany Fuzia, Nicholas Galitzki, Patricio A. Gallardo, José T. Gálvez Ghersi, Jiansong Gao, Eric Gawiser, T. Ghosh, Vera Gluscevic, N. Goeckner-Wald, Joseph E. Golec, Sam Gordon, Megan Gralla, Daniel Green, Arpi Grigorian, A. Groß, Chris Groppi, Yilun Guan, Jon E. Gudmundsson, Dongwon Han, P. Hargrave, M. Hasegawa, Matthew Hasselfield, M. Hattori, Victor Haynes, M. Hazumi, Yizhou He, Erin Healy, Shawn Henderson, C. Hervías, Charles A. Hill, J. Colin Hill, G. C. Hilton, Matt Hilton, Adam D. Hincks, G. Hinshaw, Renée Hložek, Shirley Ho, Shuay-Pwu Patty Ho, L. Howe, Zhiqi Huang, Johannes Hubmayr, K. M. Huffenberger, John P. Hughes, Anna Ijjas, Margaret Ikape, K. D. Irwin, Andrew H. Jaffe, Bhuvnesh Jain, O. Jeong, Daisuke Kaneko, E. Karpel, N. Katayama, Brian Keating, Sarah Kernasovski, Reijo Keskitalo, T. S. Kisner, Kenta Kiuchi, Jeff Klein, Kenda Knowles, Brian J. Koopman, Arthur Kosowsky, N. Krachmalnicoff, Stephen Kuenstner, Chao‐Lin Kuo, A. Kusaka, Jacob Lashner, Adrian V. Lee, Eun Seong Lee, D. Leon, Jason S.-Y. Leung, Antony Lewis, Yaqiong Li, Zack Li, M. Limon, Eric V. Linder, C. H. López-Caraballo, S. Loucatos3, Lindsay Lowry, Marius Lungu, Mathew S. Madhavacheril, D. S. Y. Mak, Felipe Maldonado, Hamdi Mani, Ben Mates, Frederick Matsuda, L. Maurin, P. Mauskopf, Andrew May, Nialh McCallum, Chris McKenney, Jeff McMahon, P. Daniel Meerburg, Joel Meyers, Amber Miller, Mark Mirmelstein, Kavilan Moodley, Moritz Münchmeyer, Charles Munson, Sigurd Næss, P. Natoli, M. Navaroli, Laura Newburgh, Hồ Nam Nguyễn, Michael D. Niemack, H. Nishino, John Orlowski-Scherer, Lyman A. Page, Bruce Partridge, J. Peloton3, F. Perrotta, Lucio Piccirillo, G. Pisano, D. Poletti, Roberto Puddu, Giuseppe Puglisi, Chris Raum, Christian Reichardt, M. Remazeilles, Yoel Rephaeli, Dominik A. Riechers, Felipe Rojas, Anirban Roy, Sharon Sadeh, Y. Sakurai, Maria Salatino1, Mayuri Sathyanarayana Rao, Emmanuel Schaan, Marcel Schmittfull, Neelima Sehgal, Joseph Seibert, Uroš Seljak, Blake D. Sherwin, Meir Shimon, Carlos Sierra, Jonathan Sievers, S. P. Sikhosana, Maximiliano Silva-Feaver, Zhilei Xu, Adrian K. Sinclair, P. Siritanasak, Kendrick M. Smith, Suzanne Smith, David N. Spergel, Suzanne T. Staggs, George Stein, Jason R. Stevens, R. Stompor1, Aritoki Suzuki, O. Tajima, S. Takakura, G. P. Teply, Daniel B. Thomas, B. Thorne, Robert Thornton, Hy Trac, C. Tsai, C. Tucker, J. N. Ullom, Sunny Vagnozzi, Alexander van Engelen, Jeff Van Lanen, Dan Van Winkle, Eve M. Vavagiakis, Clara Vergès1, Michael R. Vissers, Kasey Wagoner, Samantha Walker, Jon Ward, B. Westbrook, N. Whitehorn, Jason A. Williams, Joel Williams, Edward J. Wollack, Jiani Ye, Cyndia Yu, Cyndria Yu, Fernando Zago, Hezi Zhang, Ningfeng Zhu
1APC (UMR_7164) - AstroParticule et Cosmologie (APC - UMR 7164, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, case postale 7020, F-75205 Paris Cedex 13 - France)
2IAS - Institut d'astrophysique spatiale (Bâtiment 121 91405 ORSAY CEDEX - France)
3LAL - Laboratoire de l'Accélérateur Linéaire (Centre Scientifique d'Orsay B.P. 34 91898 ORSAY Cedex - France)

Tóm tắt

The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping ≈ 10% of the sky to a white noise level of 2 μK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio,r, at a target level of σ(r)=0.003. The large aperture telescope will map ≈ 40% of the sky at arcminute angular resolution to an expected white noise level of 6 μK-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from thePlancksatellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.

Từ khóa


Tài liệu tham khảo

2015, Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure, Astropart. Phys., 63, 66, 10.1016/j.astropartphys.2014.05.014

CMB-S4 Science Book, First Edition

1983, A Cosmological Bound on the Invisible Axion, Phys. Lett., 120, 133, 10.1016/0370-2693(83)90638-X

2012, Modelling the correlation between the thermal Sunyaev Zel'dovich effect and the cosmic infrared background, Mon. Not. Roy. Astron. Soc., 427, 1741, 10.1111/j.1365-2966.2012.21664.x

2016, Quantifying discordance in the 2015 Planck CMB spectrum, Astrophys. J., 818, 132, 10.3847/0004-637X/818/2/132

2018, Elucidating ΛCDM: Impact of Baryon Acoustic Oscillation Measurements on the Hubble Constant Discrepancy, Astrophys. J., 853, 119, 10.3847/1538-4357/aaa1ed

2011, Solar fusion cross sections II: the pp chain and CNO cycles, Rev. Mod. Phys., 83, 195, 10.1103/RevModPhys.83.195

2018, Splashback in galaxy clusters as a probe of cosmic expansion and gravity, J. Cosmol. Astropart. Phys., 2018, 033, 10.1088/1475-7516/2018/11/033

2018, Large tensor non-Gaussianity from axion-gauge field dynamics, Phys. Rev., 97, 103526, 10.1103/PhysRevD.97.103526

2013, Oscillations in the inflaton potential: Complete numerical treatment and comparison with the recent and forthcoming CMB datasets, Phys. Rev., 87, 083526, 10.1103/PhysRevD.87.083526

2017, The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample,, Mon. Not. Roy. Astron. Soc., 470, 2617, 10.1093/mnras/stx721

2015, Towards a cosmological neutrino mass detection,, Phys. Rev., 92, 123535, 10.1103/PhysRevD.92.123535

2017, Simulated forecasts for primordial B-mode searches in ground-based experiments,, Phys. Rev., 95, 043504, 10.1103/PhysRevD.95.043504

Testing Inflation with Large Scale Structure: Connecting Hopes with Reality

2016, The Kinetic Sunyaev-Zel'dovich Effect From Reionization: Simulated Full-sky Maps at Arcminute Resolution,, Astrophys. J., 824, 118, 10.3847/0004-637X/824/2/118

2006, Dark matter from an ultra-light pseudo-Goldsone-boson,, Phys. Lett., 642, 192, 10.1016/j.physletb.2006.08.069

On-sky performance of the CLASS Q-band telescope

2017, Constraining the mass of light bosonic dark matter using SDSS Lyman-α forest,, Mon. Not. Roy. Astron. Soc., 471, 4606, 10.1093/mnras/stx1870

2010, String Axiverse,, Phys. Rev., 81, 123530, 10.1103/PhysRevD.81.123530

2015, Cosmological implications of baryon acoustic oscillation measurements,, Phys. Rev., 92, 123516, 10.1103/PhysRevD.92.123516

2015, The effects of He I λ 10830 on helium abundance determinations, J. Cosmol. Astropart. Phys., 2015, 011, 10.1088/1475-7516/2015/07/011

2004, Neutrino perturbations in CMB anisotropy and matter clustering,, Phys. Rev., 69, 083002, 10.1103/PhysRevD.69.083002

2012, On the Cluster Physics of Sunyaev-Zel'dovich Surveys II: Deconstructing the Thermal SZ Power Spectrum,, Astrophys. J., 758, 75, 10.1088/0004-637X/758/2/75

2010, Simulations of the Sunyaev-Zel'dovich Power Spectrum with AGN Feedback,, Astrophys. J., 725, 91, 10.1088/0004-637X/725/1/91

2017, Future constraints on halo thermodynamics from combined Sunyaev-Zel'dovich measurements, J. Cosmol. Astropart. Phys., 2017, 040, 10.1088/1475-7516/2017/11/040

2013, Reionization on Large Scales III: Predictions for Low-ℓ Cosmic Microwave Background Polarization and High-ℓ Kinetic Sunyaev-Zel'dovich Observables,, Astrophys. J., 776, 83, 10.1088/0004-637X/776/2/83

2010, Statistical properties of polarized radio sources at high frequency and their impact on CMB polarization measurements,, Mon. Not. Roy. Astron. Soc., 413, 10.1111/j.1365-2966.2010.18115.x

2018, Partially Massless Fields During Inflation, J. High Energy Phys., 2018, 140, 10.1007/JHEP04(2018)140

2016, Phases of New Physics in the CMB, J. Cosmol. Astropart. Phys., 2016, 007, 10.1088/1475-7516/2016/01/007

2016, New Target for Cosmic Axion Searches,, Phys. Rev. Lett., 117, 171301, 10.1103/PhysRevLett.117.171301

2017, The Halo Boundary of Galaxy Clusters in the SDSS,, Astrophys. J., 841, 18, 10.3847/1538-4357/aa6ff0

2016, Joint measurement of lensing-galaxy correlations using SPT and DES SV data,, Mon. Not. Roy. Astron. Soc., 461, 4099, 10.1093/mnras/stw1584

2015, A Measurement of Gravitational Lensing of the Cosmic Microwave Background by Galaxy Clusters Using Data from the South Pole Telescope,, Astrophys. J., 806, 247, 10.1088/0004-637X/806/2/247

2018, A measurement of CMB cluster lensing with SPT and DES year 1 data,, Mon. Not. Roy. Astron. Soc., 476, 2674, 10.1093/mnras/sty305

2003, First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results,, Astrophys. J. Suppl., 148, 1, 10.1086/377253

2012, Non-Gaussian structure of the lensed CMB power spectra covariance matrix,, Phys. Rev., 86, 123008, 10.1103/PhysRevD.86.123008

2013, Cosmological Constraints from Sunyaev-Zel'dovich-Selected Clusters with X-ray Observations in the First 178 Square Degrees of the South Pole Telescope Survey,, Astrophys. J., 763, 147, 10.1088/0004-637X/763/2/147

2018, Phenomenological consequences of superfluid dark matter with baryon-phonon coupling, J. Cosmol. Astropart. Phys., 2018, 021, 10.1088/1475-7516/2018/09/021

2012, A unified empirical model for infrared galaxy counts based on observed physical evolution of distant galaxies,, Astrophys. J., 757, L23, 10.1088/2041-8205/757/2/L23

2008, The Standard Model Higgs boson as the inflaton,, Phys. Lett., 659, 703, 10.1016/j.physletb.2007.11.072

2012, Bispectrum of the Sunyaev-Zel'dovich Effect,, Astrophys. J., 760, 5, 10.1088/0004-637X/760/1/5

2016, Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band,, Phys. Rev. Lett., 116, 031302, 10.1103/PhysRevLett.116.031302

2017, BICEP2/Keck Array IX: New bounds on anisotropies of CMB polarization rotation and implications for axionlike particles and primordial magnetic fields,, Phys. Rev., 96, 102003, 10.1103/PhysRevD.96.102003

2015, Joint Analysis of BICEP2/Keck Array and Planck Data,, Phys. Rev. Lett., 114, 101301, 10.1103/PhysRevLett.114.101301

2015, Galaxy Clusters Discovered via the Sunyaev-Zel'dovich Effect in the 2500-square-degree SPT-SZ survey,, Astrophys. J. Suppl., 216, 27, 10.1088/0067-0049/216/2/27

2018, First Cosmological Constraint on the Effective Theory of Dark Matter-Proton Interactions,, Phys. Rev., 98, 083510, 10.1103/PhysRevD.98.083510

2018, Dark energy constraints from the thermal Sunyaev-Zeldovich power spectrum,, Mon. Not. Roy. Astron. Soc., 477, 4957, 10.1093/mnras/sty823

2017, Statistics of the fractional polarization of compact radio sources in Planck maps,, Mon. Not. Roy. Astron. Soc., 469, 2401, 10.1093/mnras/stx1020

2016, Tensor Squeezed Limits and the Higuchi Bound, J. Cosmol. Astropart. Phys., 2016, 041, 10.1088/1475-7516/2016/09/041

2016, Calculation of the axion mass based on high-temperature lattice quantum chromodynamics,, Nature, 539, 69, 10.1038/nature20115

2003, Reconstructing the primordial power spectrum,, Mon. Not. Roy. Astron. Soc., 342, L72, 10.1046/j.1365-8711.2003.06807.x

2013, New Light Species and the CMB, J. High Energy Phys., 2013, 058, 10.1007/JHEP12(2013)058

2018, Measuring Reionization, Neutrino Mass and Cosmic Inflation with BFORE,, J. Low. Temp. Phys., 193, 1033, 10.1007/s10909-018-2031-z

2018, BFORE: a CMB balloon payload to measure reionization, neutrino mass and cosmic Inflation (Conference Presentation),, Proc. SPIE Int. Soc. Opt. Eng., 10708, 1070805, 10.1117/12.2313772

2017, Complementing the ground-based CMB-S4 experiment on large scales with the PIXIE satellite,, Phys. Rev., 95, 063504, 10.1103/PhysRevD.95.063504

2014, Precision Epoch of Reionization studies with next-generation CMB experiments, J. Cosmol. Astropart. Phys., 2014, 010, 10.1088/1475-7516/2014/08/010

2017, Global constraints on absolute neutrino masses and their ordering,, Phys. Rev., 95, 096014, 10.1103/PhysRevD.95.096014

2008, Component Separation With Flexible Models — Application to Multichannel Astrophysical Observations,, IEEE J. Sel. Top. Sign. Proces., 2, 735, 10.1109/JSTSP.2008.2005346

2017, Internal delensing of Planck CMB temperature and polarization, J. Cosmol. Astropart. Phys., 2017, 035, 10.1088/1475-7516/2017/05/035

2018, Dark Energy Survey Year 1 Results: Calibration of redMaGiC Redshift Distributions in DES and SDSS from Cross-Correlations,, Mon. Not. Roy. Astron. Soc., 481, 2427, 10.1093/mnras/sty2424

2015, Hidden dark matter sector, dark radiation and the CMB,, Phys. Rev., 92, 055033, 10.1103/PhysRevD.92.055033

2018, Exploring cosmic origins with CORE: Gravitational lensing of the CMB, J. Cosmol. Astropart. Phys., 2018, 018, 10.1088/1475-7516/2018/04/018

2013, The Effective Number Density of Galaxies for Weak Lensing Measurements in the LSST Project,, Mon. Not. Roy. Astron. Soc., 434, 2121, 10.1093/mnras/stt1156

2013, Long-term variability of extragalactic radio sources in the Planck Early Release Compact Source Catalogue,, Astron. Astrophys., 553, A107, 10.1051/0004-6361/201220517

2002, Cosmic microwave background and large scale structure limits on the interaction between dark matter and baryons,, Phys. Rev., 65, 123515, 10.1103/PhysRevD.65.123515

2017, Rethinking CMB foregrounds: systematic extension of foreground parametrizations,, Mon. Not. Roy. Astron. Soc., 472, 1195, 10.1093/mnras/stx1982

2015, Polarized galactic synchrotron and dust emission and their correlation, J. Cosmol. Astropart. Phys., 2015, 020, 10.1088/1475-7516/2015/12/020

2016, Imaging cosmic polarization rotation,, Int. J. Mod. Phys., 25, 1640014, 10.1142/S0218271816400149

2018, One Percent Determination of the Primordial Deuterium Abundance,, Astrophys. J., 855, 102, 10.3847/1538-4357/aaab53

2014, A Measurement of the Secondary-CMB and Millimeter-wave-foreground Bispectrum using 800 deg2 of South Pole Telescope Data,, Astrophys. J., 784, 143, 10.1088/0004-637X/784/2/143

2004, Single field consistency relation for the 3-point function, J. Cosmol. Astropart. Phys., 2004, 006, 10.1088/1475-7516/2004/10/006

2016, Evidence for the thermal Sunyaev-Zel'dovich effect associated with quasar feedback,, Mon. Not. Roy. Astron. Soc., 458, 1478, 10.1093/mnras/stw344

2016, Big Bang Nucleosynthesis: 2015,, Rev. Mod. Phys., 88, 015004, 10.1103/RevModPhys.88.015004

2008, The imprints of primordial non-Gaussianities on large-scale structure: scale dependent bias and abundance of virialized objects,, Phys. Rev., 77, 123514, 10.1103/PhysRevD.77.123514

Can CMB Lensing Help Cosmic Shear Surveys?

2009, Measuring Distance Ratios with CMB-Galaxy Lensing Cross-correlations,, Phys. Rev., 79, 043509, 10.1103/PhysRevD.79.043509

2011, Detection of the Power Spectrum of Cosmic Microwave Background Lensing by the Atacama Cosmology Telescope,, Phys. Rev. Lett., 107, 021301, 10.1103/PhysRevLett.107.021301

The Atacama Cosmology Telescope: Two-season ACTPol Extragalactic Point Sources and their Polarization properties

Survey strategy optimization for the Atacama Cosmology Telescope

2017, Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope, J. Cosmol. Astropart. Phys., 2017, 008, 10.1088/1475-7516/2017/03/008

2016, Cosmological Constraints from Galaxy Clusters in the 2500 square-degree SPT-SZ Survey,, Astrophys. J., 832, 95, 10.3847/0004-637X/832/1/95

2014, Inflationary Freedom and Cosmological Neutrino Constraints,, Phys. Rev., 89, 103502, 10.1103/PhysRevD.89.103502

2018, Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity,, Phys. Lett., 782, 633, 10.1016/j.physletb.2018.06.019

2016, Relic neutrino decoupling with flavour oscillations revisited, J. Cosmol. Astropart. Phys., 2016, 051, 10.1088/1475-7516/2016/07/051

2009, A full sky, low foreground, high resolution CMB map from WMAP,, Astron. Astrophys., 493, 835, 10.1051/0004-6361:200810514

2018, Dark Energy Survey Year 1 Results: A Precise H0 Measurement from DES Y1, BAO and D/H Data,, Mon. Not. Roy. Astron. Soc., 480, 3879, 10.1093/mnras/sty1939

2018, Reconstruction of the remote dipole and quadrupole fields from the kinetic Sunyaev Zel'dovich and polarized Sunyaev Zel'dovich effects,, Phys. Rev., 98, 123501, 10.1103/PhysRevD.98.123501

1997, Nonequilibrium corrections to the spectra of massless neutrinos in the early universe,, Nucl. Phys., 503, 426, 10.1016/S0550-3213(97)00479-3

1999, Nonequilibrium corrections to the spectra of massless neutrinos in the early universe: Addendum,, Nucl. Phys., 543, 269, 10.1016/S0550-3213(98)00818-9

2017, CMB Scale Dependent Non-Gaussianity from Massive Gravity during Inflation, J. Cosmol. Astropart. Phys., 2017, 034, 10.1088/1475-7516/2017/05/034

2004, Beyond the damping tail: Cross-correlating the kinetic Sunyaev-Zel'dovich effect with cosmic shear,, Astrophys. J., 606, 46, 10.1086/382946

2011, The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectra,, Astrophys. J., 739, 52, 10.1088/0004-637X/739/1/52

2013, The Atacama Cosmology Telescope: likelihood for small-scale CMB data, J. Cosmol. Astropart. Phys., 2013, 025, 10.1088/1475-7516/2013/07/025

Observing the first galaxies

2014, Constraining Dark Matter-Baryon Scattering with Linear Cosmology,, Phys. Rev., 89, 023519, 10.1103/PhysRevD.89.023519

2015, Accounting for baryonic effects in cosmic shear tomography: Determining a minimal set of nuisance parameters using PCA,, Mon. Not. Roy. Astron. Soc., 454, 2451, 10.1093/mnras/stv2000

2018, How blind are underground and surface detectors to strongly interacting Dark Matter?,, Phys. Rev., 97, 115047, 10.1103/PhysRevD.97.115047

2004, Foreground removal by an internal linear combination method: Limitations and implications,, Astrophys. J., 612, 633, 10.1086/422807

2014, CLASS: The Cosmology Large Angular Scale Surveyor,, Proc. SPIE Int. Soc. Opt. Eng., 9153, 91531I, 10.1117/12.2056701

2017, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, J. High Energy Phys., 2017, 087, 10.1007/JHEP01(2017)087

2018, Structure formation and microlensing with axion miniclusters,, Phys. Rev., 97, 083502, 10.1103/PhysRevD.97.083502

2006, Constraining the evolution of the ionizing background and the epoch of reionization with z 6 quasars. 2. a sample of 19 quasars,, Astron. J., 132, 117, 10.1086/504836

2008, Crossing the Phantom Divide with Parameterized Post-Friedmann Dark Energy,, Phys. Rev., 78, 087303, 10.1103/PhysRevD.78.087303

2008, Challenges to the DGP Model from Horizon-Scale Growth and Geometry,, Phys. Rev., 78, 103509, 10.1103/PhysRevD.78.103509

2012, CMB lensing reconstruction in the presence of diffuse polarized foregrounds, J. Cosmol. Astropart. Phys., 2012, 017, 10.1088/1475-7516/2012/12/017

2017, Calibration of weak-lensing shear in the Kilo-Degree Survey,, Mon. Not. Roy. Astron. Soc., 467, 1627, 10.1093/mnras/stx200

2018, Bias to CMB Lensing Reconstruction from Temperature Anisotropies due to Large-Scale Galaxy Motions,, Phys. Rev., 97, 023512, 10.1103/PhysRevD.97.023512

2016, Kinematic Sunyaev-Zel'dovich effect with projected fields. II. Prospects, challenges and comparison with simulations,, Phys. Rev., 94, 123526, 10.1103/PhysRevD.94.123526

2018, Characterizing the epoch of reionization with the small-scale CMB: Constraints on the optical depth and duration,, Phys. Rev., 98, 123519, 10.1103/PhysRevD.98.123519

1999, Extrapolation of galactic dust emission at 100 microns to CMBR frequencies using FIRAS,, Astrophys. J., 524, 867, 10.1086/307852

2011, Dark Radiation Emerging After Big Bang Nucleosynthesis?,, Phys. Rev., 83, 063520, 10.1103/PhysRevD.83.063520

2014, DESI and other dark energy experiments in the era of neutrino mass measurements, J. Cosmol. Astropart. Phys., 2014, 023, 10.1088/1475-7516/2014/05/023

1990, Natural inflation with pseudo-Nambu-Goldstone bosons,, Phys. Rev. Lett., 65, 3233, 10.1103/PhysRevLett.65.3233

2004, The Cosmic energy inventory,, Astrophys. J., 616, 643, 10.1086/425155

2008, A census of metals and baryons in stars in the local Universe,, Mon. Not. Roy. Astron. Soc., 383, 1439, 10.1111/j.1365-2966.2007.12632.x

2014, CMB Polarization can constrain cosmology better than CMB temperature,, Phys. Rev., 90, 063504, 10.1103/PhysRevD.90.063504

2017, Cluster richness-mass calibration with cosmic microwave background lensing,, Nat. Astron., 1, 795, 10.1038/s41550-017-0259-1

2015, A measurement of secondary cosmic microwave background anisotropies from the 2500-square-degree SPT-SZ survey,, Astrophys. J., 799, 177, 10.1088/0004-637X/799/2/177

2014, GRB orphan afterglows in present and future radio transient surveys,, Publ. Astron. Soc. Austral., 31, 22, 10.1017/pasa.2014.14

2018, Constraints on Scattering of keV-TeV Dark Matter with Protons in the Early Universe,, Phys. Rev. Lett., 121, 081301, 10.1103/PhysRevLett.121.081301

2014, A new method to improve photometric redshift reconstruction. Applications to the Large Synoptic Survey Telescope,, Astron. Astrophys., 561, A128, 10.1051/0004-6361/201321102

2005, HEALPix — A Framework for high resolution discretization and fast analysis of data distributed on the sphere,, Astrophys. J., 622, 759, 10.1086/427976

2009, Polarized CMB spectrum estimation using the pure pseudo cross-spectrum approach,, Phys. Rev., 79, 123515, 10.1103/PhysRevD.79.123515

2014, A measurement of the millimetre emission and the Sunyaev-Zel'dovich effect associated with low-frequency radio sources,, Mon. Not. Roy. Astron. Soc., 445, 460, 10.1093/mnras/stu1592

2002, The shape of spectral breaks in GRB afterglows,, Astrophys. J., 568, 820, 10.1086/338966

Aspects of Dark Matter Annihilation in Cosmology

2017, CMB Delensing Beyond the B Modes, J. Cosmol. Astropart. Phys., 2017, 005, 10.1088/1475-7516/2017/12/005

2011, Reconstruction of the primordial power spectrum from CMB data, J. Cosmol. Astropart. Phys., 2011, 031, 10.1088/1475-7516/2011/08/031

2016, The Underground Nuclear Astrophysics in the Precision Era of BBN: Present Results and Future Perspectives,, J. Phys. Conf. Ser., 665, 012004, 10.1088/1742-6596/665/1/012004

2008, Likelihood Analysis of CMB Temperature and Polarization Power Spectra,, Phys. Rev., 77, 103013, 10.1103/PhysRevD.77.103013

2012, Evidence of Galaxy Cluster Motions with the Kinematic Sunyaev-Zel'dovich Effect,, Phys. Rev. Lett., 109, 041101, 10.1103/PhysRevLett.109.041101

2013, Detection of B-mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope,, Phys. Rev. Lett., 111, 141301, 10.1103/PhysRevLett.111.141301

GOLDRUSH. II. Clustering of Galaxies at z∼ 4–6 Revealed with the Half-Million Dropouts Over the 100 deg2 Area Corresponding to 1 Gpc3

2013, The Atacama Cosmology Telescope: Beam Measurements and the Microwave Brightness Temperatures of Uranus and Saturn,, Astrophys. J. Suppl., 209, 17, 10.1088/0067-0049/209/1/17

2013, The Atacama Cosmology Telescope: Sunyaev-Zel'dovich selected galaxyclusters at 148 GHz from three seasons of data, J. Cosmol. Astropart. Phys., 2013, 008, 10.1088/1475-7516/2013/07/008

2016, Primordial features and Planck polarization, J. Cosmol. Astropart. Phys., 2016, 009, 10.1088/1475-7516/2016/09/009

2012, LiteBIRD: a small satellite for the study of B-mode polarization and inflation from cosmic background radiation detection,, Proc. SPIE Int. Soc. Opt. Eng., 8442, 844219, 10.1117/12.926743

2016, Advanced ACTPol Cryogenic Detector Arrays and Readout,, J. Low. Temp. Phys., 184, 772, 10.1007/s10909-016-1575-z

2018, Measurements of the Temperature and E-Mode Polarization of the CMB from 500 Square Degrees of SPTpol Data,, Astrophys. J., 852, 97, 10.3847/1538-4357/aa9ff4

2002, Filtering techniques for the detection of sunyaev-zel'dovich clusters in multifrequency CMB maps,, Mon. Not. Roy. Astron. Soc., 336, 1057, 10.1046/j.1365-8711.2002.05704.x

2016, A new model of the microwave polarized sky for CMB experiments,, Mon. Not. Roy. Astron. Soc., 462, 2063, 10.1093/mnras/stw1787

2016, Detection of lensing substructure using ALMA observations of the dusty galaxy SDP.81,, Astrophys. J., 823, 37, 10.3847/0004-637X/823/1/37

2018, BoloCalc: a sensitivity calculator for the design of Simons Observatory,, Proc. SPIE Int. Soc. Opt. Eng., 10708, 1070842, 10.1117/12.2313916

2018, Foreground Biases on Primordial Non-Gaussianity Measurements from the CMB Temperature Bispectrum: Implications for Planck and Beyond,, Phys. Rev., 98, 083542, 10.1103/PhysRevD.98.083542

2016, Kinematic Sunyaev-Zel'dovich Effect with Projected Fields: A Novel Probe of the Baryon Distribution with Planck, WMAP and WISE Data,, Phys. Rev. Lett., 117, 051301, 10.1103/PhysRevLett.117.051301

2013, Cosmology from the thermal Sunyaev-Zel'dovich power spectrum: Primordial non-Gaussianity and massive neutrinos,, Phys. Rev., 88, 063526, 10.1103/PhysRevD.88.063526

2013, Cosmological constraints from moments of the thermal Sunyaev-Zel'dovich effect,, Phys. Rev., 87, 023527, 10.1103/PhysRevD.87.023527

2014, Detection of thermal SZ-CMB lensing cross-correlation in Planck nominal mission data, J. Cosmol. Astropart. Phys., 2014, 030, 10.1088/1475-7516/2014/02/030

The Atacama Cosmology Telescope: A Measurement of the Thermal Sunyaev-Zel'dovich One-Point PDF

2018, The Atacama Cosmology Telescope: The Two-Season ACTPol Sunyaev-Zel'dovich Effect Selected Cluster Catalog,, Astrophys. J. Suppl., 235, 20, 10.3847/1538-4365/aaa6cb

2015, A search for ultralight axions using precision cosmological data,, Phys. Rev., 91, 103512, 10.1103/PhysRevD.91.103512

2012, The Atacama Cosmology Telescope: a measurement of the primordial power spectrum,, Astrophys. J., 749, 90, 10.1088/0004-637X/749/1/90

2004, Gravitational lensing of the microwave background by galaxy clusters,, Astrophys. J., 616, 8, 10.1086/424808

2017, Cosmological constraints from thermal Sunyaev-Zeldovich power spectrum revisited,, Mon. Not. Roy. Astron. Soc., 469, 394, 10.1093/mnras/stx766

2013, How Massless Neutrinos Affect the Cosmic Microwave Background Damping Tail,, Phys. Rev., 87, 083008, 10.1103/PhysRevD.87.083008

2008, Parametrized Post-Friedmann Signatures of Acceleration in the CMB,, Phys. Rev., 77, 103524, 10.1103/PhysRevD.77.103524

2007, Cluster Mass Estimators from CMB Temperature and Polarization Lensing,, New J. Phys., 9, 441, 10.1088/1367-2630/9/12/441

2007, CMB Cluster Lensing: Cosmography with the Longest Lever Arm,, Phys. Rev., 76, 127301, 10.1103/PhysRevD.76.127301

2002, Mass reconstruction with CMB polarization,, Astrophys. J., 574, 566, 10.1086/341110

2007, A Parameterized Post-Friedmann Framework for Modified Gravity,, Phys. Rev., 76, 104043, 10.1103/PhysRevD.76.104043

2015, The Q/U Imaging Experiment: Polarization Measurements of Radio Sources at 43 and 95 GHz,, Astrophys. J., 806, 112, 10.1088/0004-637X/806/1/112

2016, BICEP3 focal plane design and detector performance,, Proc. SPIE Int. Soc. Opt. Eng., 9914, 99140T, 10.1117/12.2232986

2017, Ultralight scalars as cosmological dark matter,, Phys. Rev., 95, 043541, 10.1103/PhysRevD.95.043541

2014, Reconstruction of the primordial power spectrum of curvature perturbations using multiple data sets, J. Cosmol. Astropart. Phys., 2014, 025, 10.1088/1475-7516/2014/01/025

2017, Combined analysis of galaxy cluster number count, thermal Sunyaev-Zel'dovich power spectrum and bispectrum,, Astron. Astrophys., 604, A71, 10.1051/0004-6361/201630041

2006, Systematic errors in future weak lensing surveys: Requirements and prospects for self-calibration,, Mon. Not. Roy. Astron. Soc., 366, 101, 10.1111/j.1365-2966.2005.09782.x

2009, Axion as a Cold Dark Matter candidate,, Phys. Lett., 680, 1, 10.1016/j.physletb.2009.08.031

2018, Bouncing Cosmology made simple,, Class. Quant. Grav., 35, 135004, 10.1088/1361-6382/aac482

1983, Are Galactic Halos Made of Axions?,, Phys. Rev. Lett., 50, 925, 10.1103/PhysRevLett.50.925

2003, Cross-correlation tomography: measuring dark energy evolution with weak lensing,, Phys. Rev. Lett., 91, 141302, 10.1103/PhysRevLett.91.141302

2018, The C-Band All-Sky Survey (C-BASS): Design and capabilities,, Mon. Not. Roy. Astron. Soc., 480, 3224, 10.1093/mnras/sty1956

1997, A Probe of primordial gravity waves and vorticity,, Phys. Rev. Lett., 78, 2058, 10.1103/PhysRevLett.78.2058

2005

2016, An alternative validation strategy for the Planck cluster catalogue and y-distortion maps,, Astron. Astrophys., 592, A48, 10.1051/0004-6361/201526479

2010, Axions and the Strong CP Problem,, Rev. Mod. Phys., 82, 557, 10.1103/RevModPhys.82.557

1995, Determination of inflationary observables by cosmic microwave background anisotropy experiments,, Phys. Rev., 52, 4307, 10.1103/PhysRevD.52.4307

2002, A Limit on the detectability of the energy scale of inflation,, Phys. Rev. Lett., 89, 011303, 10.1103/PhysRevLett.89.011303

1990, The Early Universe, Front Phys., 69, 1

2002, The Sunyaev-Zel'dovich angular power spectrum as a probe of cosmological parameters,, Mon. Not. Roy. Astron. Soc., 336, 1256, 10.1046/j.1365-8711.2002.05889.x

Non-Gaussianity as a Probe of the Physics of the Primordial Universe and the Astrophysics of the Low Redshift Universe

2016, Characterization of foreground emission on degree angular scales for CMB B-mode observations — Thermal dust and synchrotron signal from Planck and WMAP data,, Astron. Astrophys., 588, A65, 10.1051/0004-6361/201527678

2018, S-PASS view of polarized Galactic synchrotron at 2.3 GHz as a contaminant to CMB observations,, Astron. Astrophys., 618, A166, 10.1051/0004-6361/201832768

2018, Results from the Atacama B-mode Search (ABS) Experiment, J. Cosmol. Astropart. Phys., 2018, 005, 10.1088/1475-7516/2018/09/005

2016, Demonstration of cosmic microwave background delensing using the cosmic infrared background,, Phys. Rev. Lett., 117, 151102, 10.1103/PhysRevLett.117.151102

2016, Non-Gaussianity as a Particle Detector, J. High Energy Phys., 2016, 040, 10.1007/JHEP12(2016)040

Model independent H(z) reconstruction using the cosmic inverse distance ladder

2013, 10.1017/CBO9781139012874

The DESI Experiment, a whitepaper for Snowmass 2013

2015, Scale-invariant perturbations in ekpyrotic cosmologies without fine-tuning of initial conditions,, Phys. Rev., 92, 063524, 10.1103/PhysRevD.92.063524

2003, Harmonic E/B decomposition for CMB polarization maps,, Phys. Rev., 68, 083509, 10.1103/PhysRevD.68.083509

1983, Chaotic Inflation,, Phys. Lett., 129B, 177, 10.1016/0370-2693(83)90837-7

2016, Eliminating the optical depth nuisance from the CMB with 21 cm cosmology,, Phys. Rev., 93, 043013, 10.1103/PhysRevD.93.043013

2016, Constraining Multiplicative Bias in CFHTLenS Weak Lensing Shear Data,, Phys. Rev., 93, 103508, 10.1103/PhysRevD.93.103508

Optimizing the LSST Observing Strategy for Dark Energy Science: DESC Recommendations for the Wide-Fast-Deep Survey

2017, Calibrating Cluster Number Counts with CMB lensing,, Phys. Rev., 95, 043517, 10.1103/PhysRevD.95.043517

2017, Measuring Polarized Emission in Clusters in the CMB S4 Era,, Phys. Rev., 96, 123509, 10.1103/PhysRevD.96.123509

2017, The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters, J. Cosmol. Astropart. Phys., 2017, 031, 10.1088/1475-7516/2017/06/031

LSST Science Book, Version 2.0

2015, Gamma-ray burst radio afterglows from Population III stars: Simulation methods and detection prospects with SKA precursors,, Mon. Not. Roy. Astron. Soc., 453, 2144, 10.1093/mnras/stv1318

2015, Evidence of Lensing of the Cosmic Microwave Background by Dark Matter Halos,, Phys. Rev. Lett., 114, 151302, 10.1103/PhysRevLett.114.151302

2017, Fundamental physics from future weak-lensing calibrated Sunyaev-Zel'dovich galaxy cluster counts,, Phys. Rev., 96, 103525, 10.1103/PhysRevD.96.103525

2018, Mitigating Foreground Biases in CMB Lensing Reconstruction Using Cleaned Gradients,, Phys. Rev., 98, 023534, 10.1103/PhysRevD.98.023534

2014, Current Dark Matter Annihilation Constraints from CMB and Low-Redshift Data,, Phys. Rev., 89, 103508, 10.1103/PhysRevD.89.103508

2017, Measurement of CIB power spectra over large sky areas from Planck HFI maps,, Mon. Not. Roy. Astron. Soc., 466, 286, 10.1093/mnras/stw3112

2003, Non-Gaussian features of primordial fluctuations in single field inflationary models, J. High Energy Phys., 2003, 013, 10.1088/1126-6708/2003/05/013

2011, On graviton non-Gaussianities during inflation, J. High Energy Phys., 2011, 045, 10.1007/JHEP09(2011)045

The first-year shear catalog of the Subaru Hyper Suprime-Cam SSP Survey

2002, A Precision calculation of the effective number of cosmological neutrinos,, Phys. Lett., 534, 8, 10.1016/S0370-2693(02)01622-2

2014, Cosmology and astrophysics from relaxed galaxy clusters — II. Cosmological constraints,, Mon. Not. Roy. Astron. Soc., 440, 2077, 10.1093/mnras/stu368

2015, Weighing the giants — IV. Cosmology and neutrino mass,, Mon. Not. Roy. Astron. Soc., 446, 2205, 10.1093/mnras/stu2096

2017, CMB Polarization B-mode Delensing with SPTpol and Herschel,, Astrophys. J., 846, 45, 10.3847/1538-4357/aa82bb

2018, Galaxy growth in a massive halo in the first billion years of cosmic history,, Nature, 553, 51, 10.1038/nature24629

2014, The Atacama Cosmology Telescope: Dusty Star-Forming Galaxies and Active Galactic Nuclei in the Southern Survey,, Mon. Not. Roy. Astron. Soc., 439, 1556, 10.1093/mnras/stu001

2016, Axion Cosmology,, Phys. Rept., 643, 1, 10.1016/j.physrep.2016.06.005

2010, Ultra-Light Scalar Fields and the Growth of Structure in the Universe,, Phys. Rev., 82, 103528, 10.1103/PhysRevD.82.103528

2014, The Best Inflationary Models After Planck, J. Cosmol. Astropart. Phys., 2014, 039, 10.1088/1475-7516/2014/03/039

2014, Encyclopædia Inflationaris,, Phys. Dark Univ., 5-6, 75, 10.1016/j.dark.2014.01.003

Mission design of LiteBIRD

2010, Gravity Waves and Linear Inflation from Axion Monodromy,, Phys. Rev., 82, 046003, 10.1103/PhysRevD.82.046003

2017, Reconstructing CMB fluctuations and the mean reionization optical depth,, Phys. Rev., 95, 123538, 10.1103/PhysRevD.95.123538

2016, CMB B -mode non-Gaussianity,, Phys. Rev., 93, 123511, 10.1103/PhysRevD.93.123511

2006, Catalog extraction in sz cluster surveys: a matched filter approach,, Astron. Astrophys., 459, 341, 10.1051/0004-6361:20065034

2012, The Atacama Cosmology Telescope: ACT-CL J0102-4215 `El Gordo,' a Massive Merging Cluster at Redshift 0.87,, Astrophys. J., 748, 7, 10.1088/0004-637X/748/1/7

2012, The kinetic Sunyaev-Zel'dovich signal from inhomogeneous reionization: a parameter space study,, Mon. Not. Roy. Astron. Soc., 422, 1403, 10.1111/j.1365-2966.2012.20713.x

2018, Beyond CMB cosmic variance limits on reionization with the polarized Sunyaev-Zel'dovich effect,, Phys. Rev., 97, 103505, 10.1103/PhysRevD.97.103505

2015, New Bounds for Axions and Axion-Like Particles with keV-GeV Masses,, Phys. Rev., 92, 023010, 10.1103/PhysRevD.92.023010

2016, Nonlinear Excitations in Inflationary Power Spectra,, Phys. Rev., 93, 023504, 10.1103/PhysRevD.93.023504

2017, Measurement of a Cosmographic Distance Ratio with Galaxy and Cosmic Microwave Background Lensing,, Phys. Rev. Lett., 118, 161301, 10.1103/PhysRevLett.118.161301

2013, Extragalactic Millimeter-wave Point-source Catalog, Number Counts and Statistics from 771 deg2 of the SPT-SZ Survey,, Astrophys. J., 779, 61, 10.1088/0004-637X/779/1/61

2017, Results from EDGES High-Band: I. Constraints on Phenomenological Models for the Global 21 cm Signal,, Astrophys. J., 847, 64, 10.3847/1538-4357/aa88d1

1984, New macroscopic forces?,, Phys. Rev., 30, 130, 10.1103/PhysRevD.30.130

2016, Detection of the Splashback Radius and Halo Assembly bias of Massive Galaxy Clusters,, Astrophys. J., 825, 39, 10.3847/0004-637X/825/1/39

2015, Constraints on gravity and dark energy from the pairwise kinematic Sunyaev-Zeldovich effect,, Astrophys. J., 808, 47, 10.1088/0004-637X/808/1/47

Constraining local non-Gaussianities with kSZ tomography

2010, The Australia Telescope 20 GHz Survey: The Source Catalogue,, Mon. Not. Roy. Astron. Soc., 402, 2403, 10.1111/j.1365-2966.2009.15961.x

2016, Scale-dependent gravitational waves from a rolling axion, J. Cosmol. Astropart. Phys., 2016, 041, 10.1088/1475-7516/2016/01/041

2013, Bias-Hardened CMB Lensing,, Mon. Not. Roy. Astron. Soc., 431, 609, 10.1093/mnras/stt195

2016, Designs for a large-aperture telescope to map the CMB 10X faster,, Appl. Opt., 55, 1688, 10.1364/AO.55.001686

2013, Axion as a Cold Dark Matter Candidate: Proof to Second order,, Phys. Lett., 726, 559, 10.1016/j.physletb.2013.09.052

2017, Inflationary Features and Shifts in Cosmological Parameters from Planck 2015 Data,, Phys. Rev., 96, 083526, 10.1103/PhysRevD.96.083526

2011, Detailed cluster lensing profiles at large radii and the impact on cluster weak lensing studies,, Mon. Not. Roy. Astron. Soc., 414, 1851, 10.1111/j.1365-2966.2011.18481.x

A Big Sky Approach to Cadence Diplomacy

2018, Great Optically Luminous Dropout Research Using Subaru HSC (GOLDRUSH). I. UV Luminosity Functions at z ∼ 4–7 Derived with the Half-Million Dropouts on the 100 deg2 Sky,, Publ. Astron. Soc. Jap., 70, S10, 10.1093/pasj/psx103

2014, Extragalactic Foreground Contamination in Temperature-based CMB Lens Reconstruction, J. Cosmol. Astropart. Phys., 2014, 024, 10.1088/1475-7516/2014/03/024

2005, A Simple and accurate model for intra-cluster gas,, Astrophys. J., 634, 964, 10.1086/497122

2005, Detecting dark matter annihilation with CMB polarization: Signatures and experimental prospects,, Phys. Rev., 72, 023508, 10.1103/PhysRevD.72.023508

2018

2001, Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications,, IEEE Trans. Antennas Propagat., 49, 1683, 10.1109/8.982447

2018, The Impact of Baryonic Physics on the Kinetic Sunyaev-Zel'dovich Effect,, Astrophys. J., 853, 121, 10.3847/1538-4357/aaa0da

The optical design of the six-meter CCAT-prime and Simons Observatory telescopes

2017, Can CMB Surveys Help the AGN Community?,, Galaxies, 5, 47, 10.3390/galaxies5030047

2016, Review of Particle Physics,, Chin. Phys., 40, 100001, 10.1088/1674-1137/40/10/100001

1977, CP Conservation in the Presence of Instantons,, Phys. Rev. Lett., 38, 1440, 10.1103/PhysRevLett.38.1440

2017, Full covariance of CMB and lensing reconstruction power spectra,, Phys. Rev., 95, 043508, 10.1103/PhysRevD.95.043508

2008, PArthENoPE: Public Algorithm Evaluating the Nucleosynthesis of Primordial Elements,, Comput. Phys. Commun., 178, 956, 10.1016/j.cpc.2008.02.015

2018, Precision big bang nucleosynthesis with improved Helium-4 predictions,, Phys. Rept., 754, 1, 10.1016/j.physrep.2018.04.005

2014, Planck 2013 results. XV. CMB power spectra and likelihood,, Astron. Astrophys., 571, A15, 10.1051/0004-6361/201321573

2014, Planck 2013 results. XVI. Cosmological parameters,, Astron. Astrophys., 571, A16, 10.1051/0004-6361/201321591

2014, Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts,, Astron. Astrophys., 571, A20, 10.1051/0004-6361/201321521

2014, Planck 2013 results. XXI. Power spectrum and high-order statistics of the Planck all-sky Compton parameter map,, Astron. Astrophys., 571, A21, 10.1051/0004-6361/201321522

2014, Planck 2013 results. XXX. Cosmic infrared background measurements and implications for star formation,, Astron. Astrophys., 571, A30, 10.1051/0004-6361/201322093

2016, Planck 2015 results. VI. LFI mapmaking,, Astron. Astrophys., 594, A6, 10.1051/0004-6361/201525813

2016, Planck 2015 results. VIII. High Frequency Instrument data processing: Calibration and maps,, Astron. Astrophys., 594, A8, 10.1051/0004-6361/201525820

2016, Planck 2015 results. X. Diffuse component separation: Foreground maps,, Astron. Astrophys., 594, A10, 10.1051/0004-6361/201525967

2016, Planck 2015 results. XI. CMB power spectra, likelihoods and robustness of parameters,, Astron. Astrophys., 594, A11, 10.1051/0004-6361/201526926

2016, Planck 2015 results. XIII. Cosmological parameters,, Astron. Astrophys., 594, A13, 10.1051/0004-6361/201525830

2016, Planck 2015 results. XVII. Constraints on primordial non-Gaussianity,, Astron. Astrophys., 594, A17, 10.1051/0004-6361/201525836

2016, Planck 2015 results. XX. Constraints on inflation,, Astron. Astrophys., 594, A20, 10.1051/0004-6361/201525898

2016, Planck 2015 results. XXII. A map of the thermal Sunyaev-Zeldovich effect,, Astron. Astrophys., 594, A22, 10.1051/0004-6361/201525826

2016, Planck 2015 results. XXIII. The thermal Sunyaev-Zeldovich effect — cosmic infrared background correlation,, Astron. Astrophys., 594, A23, 10.1051/0004-6361/201527418

2016, Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts,, Astron. Astrophys., 594, A24, 10.1051/0004-6361/201525833

2016, Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds,, Astron. Astrophys., 594, A25, 10.1051/0004-6361/201526803

2016, Planck 2015 results. XXVI. The Second Planck Catalogue of Compact Sources,, Astron. Astrophys., 594, A26, 10.1051/0004-6361/201526914

2016, Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources,, Astron. Astrophys., 594, A27, 10.1051/0004-6361/201525823

2016, Planck intermediate results. XLIX. Parity-violation constraints from polarization data,, Astron. Astrophys., 596, A110, 10.1051/0004-6361/201629018

2016, Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth,, Astron. Astrophys., 596, A107, 10.1051/0004-6361/201628890

2016, Planck intermediate results. XLVII. Planck constraints on reionization history,, Astron. Astrophys., 596, A108, 10.1051/0004-6361/201628897

2016, Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes,, Astron. Astrophys., 586, A133, 10.1051/0004-6361/201425034

2017, Planck intermediate results. LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters,, Astron. Astrophys., 607, A95, 10.1051/0004-6361/201629504

Planck 2018 results. I. Overview and the cosmological legacy of Planck

Planck 2018 results. II. Low Frequency Instrument data processing

Planck 2018 results. III. High Frequency Instrument data processing and frequency maps

Planck 2018 results. VI. Cosmological parameters

Planck 2018 results. VIII. Gravitational lensing

Planck 2018 results. X. Constraints on inflation

2014, A Measurement of the Cosmic Microwave Background B-Mode Polarization Power Spectrum at Sub-Degree Scales with POLARBEAR,, Astrophys. J., 794, 171, 10.1088/0004-637X/794/2/171

2014, Evidence for Gravitational Lensing of the Cosmic Microwave Background Polarization from Cross-correlation with the Cosmic Infrared Background,, Phys. Rev. Lett., 112, 131302, 10.1103/PhysRevLett.112.131302

2014, Measurement of the Cosmic Microwave Background Polarization Lensing Power Spectrum with the POLARBEAR experiment,, Phys. Rev. Lett., 113, 021301, 10.1103/PhysRevLett.113.021301

2015, POLARBEAR Constraints on Cosmic Birefringence and Primordial Magnetic Fields,, Phys. Rev., 92, 123509, 10.1103/PhysRevD.92.123509

2017, A Measurement of the Cosmic Microwave Background B-Mode Polarization Power Spectrum at Sub-Degree Scales from 2 years of POLARBEAR Data,, Astrophys. J., 848, 121, 10.3847/1538-4357/aa8e9f

2016, Large arrays of dual-polarized multichroic TES detectors for CMB measurements with the SPT-3G receiver,, Proc. SPIE, 9914, 991417, 10.1117/12.2232912

2018, Cosmological implications of ultralight axionlike fields,, Phys. Rev., 98, 083525, 10.1103/PhysRevD.98.083525

Forecasting Polarized Radio Sources for CMB observations

2011, First Season QUIET Observations: Measurements of CMB Polarization Power Spectra at 43 GHz in the Multipole Range 25 ≲ ℓ ≲ 475,, Astrophys. J., 741, 111, 10.1088/0004-637X/741/2/111

2012, Second Season QUIET Observations: Measurements of the CMB Polarization Power Spectrum at 95 GHz,, Astrophys. J., 760, 145, 10.1088/0004-637X/760/2/145

2012, A measurement of secondary cosmic microwave background anisotropies with two years of South Pole Telescope observations,, Astrophys. J., 755, 70, 10.1088/0004-637X/755/1/70

2011, CMB and SZ effect separation with Constrained Internal Linear Combinations,, Mon. Not. Roy. Astron. Soc., 410, 2481, 10.1111/j.1365-2966.2010.17624.x

2014, Connecting radio variability to the characteristics of gamma-ray blazars,, Mon. Not. Roy. Astron. Soc., 438, 3058, 10.1093/mnras/stt2412

2018, Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble Constant,, Astrophys. J., 861, 126, 10.3847/1538-4357/aac82e

2016, redMaGiC: Selecting Luminous Red Galaxies from the DES Science Verification Data,, Mon. Not. Roy. Astron. Soc., 461, 1431, 10.1093/mnras/stw1281

2003, Discriminating between unresolved point sources and `negative' SZ clusters in CMB maps,, Mon. Not. Roy. Astron. Soc., 344, 1155, 10.1046/j.1365-8711.2003.06893.x

2014, redMaPPer I: Algorithm and SDSS DR8 Catalog,, Astrophys. J., 785, 104, 10.1088/0004-637X/785/2/104

2018, Constraints from thermal Sunyaev-Zel'dovich cluster counts and power spectrum combined with CMB,, Astron. Astrophys., 614, A13, 10.1051/0004-6361/201731990

1999, Microwave polarization in the direction of galaxy clusters induced by the CMB quadrupole anisotropy,, Mon. Not. Roy. Astron. Soc., 310, 765, 10.1046/j.1365-8711.1999.02981.x

Foreground-immune CMB lensing with shear-only reconstruction

2017, Looking through the same lens: Shear calibration for LSST, Euclid and WFIRST with stage 4 CMB lensing,, Phys. Rev., 95, 123512, 10.1103/PhysRevD.95.123512

2016, Evidence for the kinematic Sunyaev-Zel'dovich effect with the Atacama Cosmology Telescope and velocity reconstruction from the Baryon Oscillation Spectroscopic Survey,, Phys. Rev., 93, 082002, 10.1103/PhysRevD.93.082002

2016, Contrasting Galaxy Formation from Quantum Wave Dark Matter, ψDM, with ΛCDM, using Planck and Hubble Data,, Astrophys. J., 818, 89, 10.3847/0004-637X/818/1/89

2018, Parameter constraints from cross-correlation of CMB lensing with galaxy clustering,, Phys. Rev., 97, 123540, 10.1103/PhysRevD.97.123540

2010, Simulations of the Microwave Sky,, Astrophys. J., 709, 920, 10.1088/0004-637X/709/2/920

2011, The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected via the Sunyaev-Zel'dovich Effect,, Astrophys. J., 732, 44, 10.1088/0004-637X/732/1/44

2018, Concept design of the LiteBIRD satellite for CMB B-mode polarization,, Proc. SPIE, 10698, 106981Y, 10.1117/12.2313432

2009, Extracting primordial non-Gaussianity without cosmic variance,, Phys. Rev. Lett., 102, 021302, 10.1103/PhysRevLett.102.021302

2004, Gravitational lensing as a contaminant of the gravity wave signal in CMB,, Phys. Rev., 69, 043005, 10.1103/PhysRevD.69.043005

2000, Lensing induced cluster signatures in cosmic microwave background,, Astrophys. J., 538, 57, 10.1086/309098

2011, Quantifying the effect of baryon physics on weak lensing tomography,, Mon. Not. Roy. Astron. Soc., 417, 2020, 10.1111/j.1365-2966.2011.19385.x

2012, Deconstructing the kinetic SZ Power Spectrum,, Astrophys. J., 756, 15, 10.1088/0004-637X/756/1/15

2009, Sharpening the Precision of the Sunyaev-Zel'dovich Power Spectrum,, Astrophys. J., 702, 368, 10.1088/0004-637X/702/1/368

2017, Practical Weak Lensing Shear Measurement with Metacalibration,, Astrophys. J., 841, 24, 10.3847/1538-4357/aa704b

2015, Delensing the CMB with the Cosmic Infrared Background,, Phys. Rev., 92, 043005, 10.1103/PhysRevD.92.043005

2017, Two-season Atacama Cosmology Telescope polarimeter lensing power spectrum,, Phys. Rev., 95, 123529, 10.1103/PhysRevD.95.123529

2011, Neutrino Mass Inference from SZ Surveys,, Mon. Not. Roy. Astron. Soc., 412, 1895, 10.1111/j.1365-2966.2010.18026.x

2018, CMB bounds on tensor-scalar-scalar inflationary correlations, J. Cosmol. Astropart. Phys., 2018, 016, 10.1088/1475-7516/2018/01/016

2011, CMB Bispectrum from Primordial Scalar, Vector and Tensor non-Gaussianities,, Prog. Theor. Phys., 125, 795, 10.1143/PTP.125.795

2013, The Atacama Cosmology Telescope: Cosmological parameters from three seasons of data, J. Cosmol. Astropart. Phys., 2013, 060, 10.1088/1475-7516/2013/10/060

2004, Dark-matter electric and magnetic dipole moments,, Phys. Rev., 70, 083501, 10.1103/PhysRevD.70.083501

2017, Cross-correlating Planck CMB lensing with SDSS: Lensing-lensing and galaxy-lensing cross-correlations,, Mon. Not. Roy. Astron. Soc., 464, 2120, 10.1093/mnras/stw2482

2018, Early-Universe constraints on dark matter-baryon scattering and their implications for a global 21 cm signal,, Phys. Rev., 98, 023013, 10.1103/PhysRevD.98.023013

2006, Pseudo-c(l) estimators which do not mix e and b modes,, Phys. Rev., 74, 083002, 10.1103/PhysRevD.74.083002

2017, Detecting Patchy Reionization in the Cosmic Microwave Background,, Phys. Rev. Lett., 119, 021301, 10.1103/PhysRevLett.119.021301

2012, Delensing CMB Polarization with External Datasets, J. Cosmol. Astropart. Phys., 2012, 014, 10.1088/1475-7516/2012/06/014

KSZ tomography and the bispectrum

1992, 55, 489

1979, Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett., 30, 682

1980, A New Type of Isotropic Cosmological Models Without Singularity,, Phys. Lett., 91, 99, 10.1016/0370-2693(80)90670-X

2018, Designs for next generation CMB survey strategies from Chile,, Proc. SPIE Int. Soc. Opt. Eng., 10708, 1070841, 10.1117/12.2313898

2016, Forecasting performance of CMB experiments in the presence of complex foreground contaminations,, Phys. Rev., 94, 083526, 10.1103/PhysRevD.94.083526

2015, A Measurement of the Cosmic Microwave Background Gravitational Lensing Potential from 100 Square Degrees of SPTpol Data,, Astrophys. J., 810, 50, 10.1088/0004-637X/810/1/50

1969, Distortions of the Background Radiation Spectrum,, Nature, 223, 721, 10.1038/223721a0

1972, The Observations of Relic Radiation as a Test of the Nature of X-Ray Radiation from the Clusters of Galaxies, Comments Astrophys. Space Phys., 4, 173

2016, The POLARBEAR-2 and the Simons Array Experiment,, J. Low. Temp. Phys., 184, 805, 10.1007/s10909-015-1425-4

2017, Performance of a continuously rotating half-wave plate on the POLARBEAR telescope, J. Cosmol. Astropart. Phys., 2017, 008, 10.1088/1475-7516/2017/05/008

2001, How to measure CMB polarization power spectra without losing information,, Phys. Rev., 64, 063001, 10.1103/PhysRevD.64.063001

2017, The Python Sky Model: software for simulating the Galactic microwave sky,, Mon. Not. Roy. Astron. Soc., 469, 2821, 10.1093/mnras/stx949

2011, Population III GRB Afterglows: Constraints on Stellar Masses and External Medium Densities,, Astrophys. J., 731, 127, 10.1088/0004-637X/731/2/127

2011, Templates for the Sunyaev-Zel'dovich Angular Power Spectrum,, Astrophys. J., 727, 94, 10.1088/0004-637X/727/2/94

2004, Predictions on high frequency polarization properties of extragalactic radio sources and implications for CMB polarization measurements,, Mon. Not. Roy. Astron. Soc., 349, 1267, 10.1111/j.1365-2966.2004.07593.x

2012, The impact of polarized extragalactic radio sources on the detection of CMB anisotropies in polarization,, Adv. Astron., 2012, 624987, 10.1155/2012/624987

2011, High-frequency predictions for number counts and spectral properties of extragalactic radio sources. New evidences of a break at mm wavelengths in spectra of bright blazar sources,, Astron. Astrophys., 533, A57, 10.1051/0004-6361/201116972

2012, Using CMB lensing to constrain the multiplicative bias of cosmic shear,, Astrophys. J., 759, 32, 10.1088/0004-637X/759/1/32

2013, The synergy between the Dark Energy Survey and the South Pole Telescope,, Astrophys. J., 778, 108, 10.1088/0004-637X/778/2/108

2014, CMB Lensing Power Spectrum Biases from Galaxies and Clusters using High-angular Resolution Temperature Maps,, Astrophys. J., 786, 13, 10.1088/0004-637X/786/1/13

2012, A measurement of gravitational lensing of the microwave background using South Pole Telescope data,, Astrophys. J., 756, 142, 10.1088/0004-637X/756/2/142

2010, Galaxy Clusters Selected with the Sunyaev-Zel'dovich Effect from 2008 South Pole Telescope Observations,, Astrophys. J., 722, 1180, 10.1088/0004-637X/722/2/1180

2010, Extragalactic millimeter-wave sources in South Pole Telescope survey data: source counts, catalog and statistics for an 87 square-degree field,, Astrophys. J., 719, 763, 10.1088/0004-637X/719/1/763

2009, Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints,, Astrophys. J., 692, 1060, 10.1088/0004-637X/692/2/1060

2018, The Effects of Bandpass Variations on Foreground Removal Forecasts for Future CMB Experiments,, Astrophys. J., 861, 82, 10.3847/1538-4357/aac71f

2018, A Projected Estimate of the Reionization Optical Depth Using the CLASS Experiment's Sample Variance Limited E-mode Measurement,, Astrophys. J., 863, 121, 10.3847/1538-4357/aad283

1978, A New Light Boson?,, Phys. Rev. Lett., 40, 223, 10.1103/PhysRevLett.40.223

2016, Millimeter Transient Point Sources in the SPTpol 100 Square Degree Survey,, Astrophys. J., 830, 143, 10.3847/0004-637X/830/2/143

1978, Problem of Strong P and T Invariance in the Presence of Instantons,, Phys. Rev. Lett., 40, 279, 10.1103/PhysRevLett.40.279

2012, The Atacama Cosmology Telescope: A Measurement of the Thermal Sunyaev-Zel'dovich Effect Using the Skewness of the CMB Temperature Distribution, Phys. Rev., 86, 122005, 10.1103/PhysRevD.86.122005

2018, Probing sub-GeV Dark Matter-Baryon Scattering with Cosmological Observables,, Phys. Rev., 97, 103530, 10.1103/PhysRevD.97.103530

2017, Multitracer CMB delensing maps from Planck and WISE data,, Phys. Rev., 96, 123511, 10.1103/PhysRevD.96.123511

1997, An all sky analysis of polarization in the microwave background,, Phys. Rev., 55, 1830, 10.1103/PhysRevD.55.1830

2018, Dark Energy Survey Year 1 Results: Weak Lensing Shape Catalogues,, Mon. Not. Roy. Astron. Soc., 481, 1149, 10.1093/mnras/sty2219