The Selectively Pseudocompact-Open Topology on C(X)
Tóm tắt
This paper studies the selectively pseudocompact-open topology on the set of the real-valued continuous functions on a Tychonoff space, and compares this topology with the
$$\alpha $$
-open topology and the topology of uniform convergence on the elements of
$$\alpha $$
where
$$\alpha $$
is one of the following:
$$\{X\}$$
, the finite subsets of X, the compact subsets of X, the countably compact subsets of X, and the pseudocompact subsets of X. Moreover, it also analyzes the almost cc-
$$\omega $$
-bounded spaces.
Tài liệu tham khảo
Alas, O.T., Martínez-Cadena, J.A., Wilson, R.G.: On sequential and selective feeble compactness. Houston J. Math. 4(3), 1063–1079 (2018)
Angoa, J., Ortiz-Castillo, Y.F., Tamariz-Mascarúa, Á.: Ultrafilters and properties related to compactness. Topol. Proc. 43, 183–200 (2014)
Bruguera, M., Tkachenko, M.: The three space problem in topological groups. Topol. Appl. 153(13), 2278–2302 (2006)
Dorantes-Aldama, A., Shakhmatov, D.: Selective sequential pseudocompactness. Topol. Appl. 222, 53–69 (2017)
Engelking, R.: General Topology. Heldermann Verlag, Berlin (1989)
García-Ferreira, S., Ortíz-Castillo, Y.F.: Strong pseudocompact properties. Comment. Math. Univ. Carolinae 55(1), 101–109 (2014)
García-Ferreira, S., Tomita, A.H.: A pseudocompact group which is not strongly pseudocompact. Topol. Appl. 192, 138–144 (2015)
Kundu, S., Garg, P.: The pseudocompact-open topology on C(X). Topol. Proc. 30, 279–299 (2006)
Kundu, S., Garg, P.: Countability Properties of the Pseudocompact-Open Topology on C(X): A Comparative Study. Rend. Istit. Mat. Univ. Trieste 39, 421–444 (2007)
Kundu, S., Garg, P.: Completeness properties of the pseudocompact-open topology on C(X). Math. Slovaca. 58(3), 325–338 (2008)
Kundu, S., McCoy, R.A.: Topologies between compact and uniform convergence on function spaces. Int. J. Math. Math. Sci. 16(1), 101–109 (1993)
Kundu, S., McCoy, R. A., Raha, A. B.: Topologies between compact and uniform convergence on function spaces, II, Real Anl. Exchange 18, no. 1, 176–189 (1992/93)
Kundu, S., Raha, A.B.: The bounded-open topology and its relatives. Rend. Istit. Mat. Univ. Trieste 27, 61–77 (1995)
Martínez-Cadena, J. A., Sanchis, M.: Some aspects on generalizations of compactness in (para)topological groups, Topol. Algebra Appl., preprint
McCoy, R.A., Ntantu, I.: Completeness properties of function spaces. Topol. Appl. 22, 191–206 (1986)
McCoy, R. A., Ntantu, I.: Topological Properties of Spaces of Continuous Functions, Lecture Notes in Math., 1315 (Springer, Berlin) (1988)
Mrówka, S.: On complete regular spaces. Fund. Math. 41, 105–106 (1954)
Nokhrin, S.E., Osipov, A.V.: On the coincidence of set-open and uniform topologies. Proc. Steklov Inst. Math. Suppl. 3, 184–191 (2009)
Osipov, A.V.: The C-compact-open topology on function spaces. Topol. Appl. 159(13), 3059–3066 (2012)
Pichardo-Mendoza, R., Tamariz-Mascarúa, Á., Villegas-Rodríguez, H.: Pseudouniform topologies on C(X) given by ideals. Comment. Math. Univ. Carolin. 54(4), 557–577 (2013)
Sanchis, M.: A note on quasi-\(k\)-spaces. Rend. Istit. Mat. Univ. Trieste 30, 173–179 (1999)
Shakhmatov, D.B.: A pseudocompact Tychonoff space all countable subsets of which are closed and \(C^*\)-embedded. Topol. Appl. 22, 139–144 (1986)
Shiraki, T.: A note on \(M\)-spaces. Proc. Jpn Acad. Ser. A Math. Sci. 43, 873–875 (1967)
Tkachuk, V.V., Wilson, R.G.: Cellular-compact spaces and their applications. Acta Math. Hungarica 159, 674–688 (2019)
Vaughan, J. E.: Countably compact and sequentially compact spaces, Handbook of Set-Theoretic Topology, (K. Kunen and J.E. Vaughan, eds.), North-Holland, Amsterdam, pp. 569–602 (1984)