Vai trò của tình trạng kẽm đối với trí nhớ không gian, tính đàn hồi synap ở hồi hải mã và tín hiệu insulin trong bệnh Alzheimer dạng sporadic giống chuột do icv-STZ gây ra

Biological Trace Element Research - Tập 200 - Trang 4068-4078 - 2021
Saltuk Bugra Baltaci1, Omer Unal1, Elif Gulbahce-Mutlu2, Haluk Gumus3, Suray Pehlivanoglu4, Ahmet Yardimci5, Rasim Mogulkoc1, Abdulkerim Kasim Baltaci1
1Department of Physiology, Medical Faculty, Selçuk University, Konya, Turkey
2Department of Medical Biology, Medical Faculty, KTO Karatay University, Konya, Turkey
3Department of Neurology, Medical Faculty, Selçuk University, Konya, Turkey
4Department of Molecular Biology, Science Faculty, Necmettin Erbakan University, Konya, Turkey
5Department of Physiology, Medical Faculty, Firat University, Elazig, Turkey

Tóm tắt

Bệnh Alzheimer (AD), đặc biệt là dạng sporadic (sAD), có tính chất đa yếu tố. Kháng insulin não và sự rối loạn ổn định kẽm là hai khía cạnh chính của AD vẫn đang được làm rõ. Trong nghiên cứu này, chúng tôi đã khảo sát ảnh hưởng của việc thiếu hụt kẽm trong chế độ ăn uống và bổ sung kẽm đối với trí nhớ, tính đàn hồi synap ở hồi hải mã và tín hiệu insulin trong mô hình chuột bị sAD do icv-STZ gây ra. Hiệu suất trí nhớ được đánh giá thông qua mê cung nước Morris. Biểu hiện protein hồi hải mã và mức mRNA của các mục tiêu liên quan đến tính đàn hồi synap và đường tín hiệu insulin được đánh giá bằng phương pháp Western blot và PCR định lượng thời gian thực. Chúng tôi phát hiện ra rằng chuột icv-STZ có những thiếu hụt về trí nhớ, và điều này đã được hồi phục hoàn toàn nhờ vào việc bổ sung kẽm. Phân tích Western blot cho thấy điều trị icv-STZ đã làm giảm đáng kể protein PSD95 và p-GSK3β ở hồi hải mã, và bổ sung kẽm đã khôi phục lại các mức protein bình thường. Mức độ mRNA của BDNF, PSD95, SIRT1, GLUT4, thụ thể insulin và ZnT3 bị giảm bởi icv-STZ và được phục hồi bởi việc bổ sung kẽm. Dữ liệu của chúng tôi cho thấy rằng việc bổ sung kẽm cải thiện các thiếu hụt về nhận thức và cứu vãn sự suy giảm ở các mục tiêu phân tử chính của tính đàn hồi synap và tín hiệu insulin ở hồi hải mã do icv-STZ gây ra trong mô hình chuột sAD.

Từ khóa

#Alzheimer #kẽm #trí nhớ #hồi hải mã #tín hiệu insulin #chuột #sAD

Tài liệu tham khảo

Panza F, Lozupone M, Logroscino G, Imbimbo BP (2019) A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 15(2):73–88 Arnold SE, Arvanitakis Z, Macauley-Rambach SL, Koenig AM, Wang H-Y, Ahima RS, Craft S, Gandy S, Buettner C, Stoeckel LE (2018) Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol 14(3):168–181. https://doi.org/10.1038/nrneurol.2017.185 Sensi SL, Granzotto A, Siotto M, Squitti R (2018) Copper and zinc dysregulation in Alzheimer’s disease. Trends Pharmacol Sci 39(12):1049–1063. https://doi.org/10.1016/j.tips.2018.10.001 Talbot K, Wang H-Y, Kazi H, Han L-Y, Bakshi KP, Stucky A, Fuino RL, Kawaguchi KR, Samoyedny AJ, Wilson RS (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Investig 122(4):1316–1338. https://doi.org/10.1172/JCI59903 Mosconi L, Sorbi S, De Leon MJ, Li Y, Nacmias B, Myoung PS, Tsui W, Ginestroni A, Bessi V, Fayyazz M (2006) Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer’s disease. J Nucl Med 47(11):1778–1786 Salkovic-Petrisic M, Osmanovic-Barilar J, Brückner MK, Hoyer S, Arendt T, Riederer P (2011) Cerebral amyloid angiopathy in streptozotocin rat model of sporadic Alzheimer’s disease: a long-term follow up study. J Neural Transm 118(5):765–772. https://doi.org/10.1007/s00702-011-0651-4 Rai S, Kamat PK, Nath C, Shukla R (2013) A study on neuroinflammation and NMDA receptor function in STZ (ICV) induced memory impaired rats. J Neuroimmunol 254(1–2):1–9. https://doi.org/10.1016/j.jneuroim.2012.08.008 Reeta K, Singh D, Gupta Y (2017) Chronic treatment with taurine after intracerebroventricular streptozotocin injection improves cognitive dysfunction in rats by modulating oxidative stress, cholinergic functions and neuroinflammation. Neurochem Int 108:146–156. https://doi.org/10.1016/j.neuint.2017.03.006 Ponce-Lopez T, Liy-Salmeron G, Hong E, Meneses A (2011) Lithium, phenserine, memantine and pioglitazone reverse memory deficit and restore phospho-GSK3β decreased in hippocampus in intracerebroventricular streptozotocin induced memory deficit model. Brain Res 1426:73–85. https://doi.org/10.1016/j.brainres.2011.09.056 Grieb P (2016) Intracerebroventricular streptozotocin injections as a model of Alzheimer’s disease: in search of a relevant mechanism. Mol Neurobiol 53(3):1741–1752. https://doi.org/10.1007/s12035-015-9132-3 Bush AI (2013) The metal theory of Alzheimer’s disease. J Alzheimers Dis 33(s1):S277–S281. https://doi.org/10.3233/JAD-2012-129011 Palmiter RD, Cole TB, Quaife CJ, Findley SD (1996) ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci 93(25):14934–14939. https://doi.org/10.1073/pnas.93.25.14934 Bush AI, Pettingell WH, Multhaup G, Paradis MD, Vonsattel JP, Gusella JF, Beyreuther K, Masters CL, Tanzi RE (1994) Rapid induction of Alzheimer A beta amyloid formation by zinc. Sci 265(5177):1464–1467. https://doi.org/10.1126/science.8073293 Huang YZ, Pan E, Xiong Z-Q, McNamara JO (2008) Zinc-mediated transactivation of TrkB potentiates the hippocampal mossy fiber-CA3 pyramid synapse. Neuron 57(4):546–558. https://doi.org/10.1016/j.neuron.2007.11.026 Hwang JJ, Park M-H, Choi S-Y, Koh J-Y (2005) Activation of the Trk signaling pathway by extracellular zinc: role of metalloproteinases. J Biol Chem 280(12):11995–12001. https://doi.org/10.1074/jbc.M403172200 Grabrucker AM, Knight MJ, Proepper C, Bockmann J, Joubert M, Rowan M, Nienhaus GU, Garner CC, Bowie JU, Kreutz MR (2011) Concerted action of zinc and ProSAP/Shank in synaptogenesis and synapse maturation. EMBO J 30(3):569–581. https://doi.org/10.1038/emboj.2010.336 Wang Z-X, Tan L, Wang H-F, Ma J, Liu J, Tan M-S, Sun J-H, Zhu X-C, Jiang T, Yu J-T (2015) Serum iron, zinc, and copper levels in patients with Alzheimer’s disease: a replication study and meta-analyses. J Alzheimers Dis 47(3):565–581. https://doi.org/10.3233/JAD-143108 Vardatsikos G, Pandey NR, Srivastava AK (2013) Insulino-mimetic and anti-diabetic effects of zinc. J Inorg Biochem 120:8–17. https://doi.org/10.1016/j.jinorgbio.2012.11.006 Oz M, Demir EA, Caliskan M, Mogulkoc R, Baltaci AK, NurullahogluAtalik KE (2017) 3′, 4′-Dihydroxyflavonol attenuates spatial learning and memory impairments in global cerebral ischemia. Nutr Neurosci 20(2):119–126. https://doi.org/10.1179/1476830514Y.0000000159 Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262 Suzanne M, Tong M (2014) Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochem Pharmacol 88(4):548–559. https://doi.org/10.1016/j.bcp.2013.12.012 Li YV (2014) Zinc and insulin in pancreatic beta-cells. Endocrine 45(2):178–189. https://doi.org/10.1007/s12020-013-0032-x Hernandez F, Lucas JJ, Avila J (2013) GSK3 and tau: two convergence points in Alzheimer’s disease. J Alzheimers Dis 33(s1):S141–S144. https://doi.org/10.3233/JAD-2012-129025 Kodirov SA, Takizawa S, Joseph J, Kandel ER, Shumyatsky GP, Bolshakov VY (2006) Synaptically released zinc gates long-term potentiation in fear conditioning pathways. Proc Natl Acad Sci 103(41):15218–15223. https://doi.org/10.1073/pnas.0607131103 Takeda A (2011) Zinc signaling in the hippocampus and its relation to pathogenesis of depression. Mol Neurobiol 44(2):166–174. https://doi.org/10.1016/j.jtemb.2012.03.016 Cope EC, Morris DR, Scrimgeour AG, Levenson CW (2012) Use of zinc as a treatment for traumatic brain injury in the rat: effects on cognitive and behavioral outcomes. Neurorehabil Neural Repair 26(7):907–913. https://doi.org/10.1177/2F1545968311435337 Xu Z-P, Li L, Bao J, Wang Z-H, Zeng J, Liu E-J, Li X-G, Huang R-X, Gao D, Li M-Z (2014) Magnesium protects cognitive functions and synaptic plasticity in streptozotocin-induced sporadic Alzheimer’s model. PLoS ONE 9(9):e108645. https://doi.org/10.1371/journal.pone.0108645 Rajasekar N, Nath C, Hanif K, Shukla R (2017) Intranasal insulin administration ameliorates streptozotocin (ICV)-induced insulin receptor dysfunction, neuroinflammation, amyloidogenesis, and memory impairment in rats. Mol Neurobiol 54(8):6507–6522. https://doi.org/10.1007/s12035-016-0169-8 Anderson KL, Frazier HN, Maimaiti S, Bakshi VV, Majeed ZR, Brewer LD, Porter NM, Lin A-L, Thibault O (2017) Impact of single or repeated dose intranasal zinc-free insulin in young and aged F344 rats on cognition, signaling, and brain metabolism. J Gerontol Series A: Biomed Sci Med Scis 72(2):189–197 Baltaci AK, Mogulkoc R, Baltaci SB (2019) The role of zinc in the endocrine system. Pak J Pharm Sci 32 (1). Savioz A, Leuba G, Vallet PG (2014) A framework to understand the variations of PSD-95 expression in brain aging and in Alzheimer’s disease. Ageing Res Rev 18:86–94. https://doi.org/10.1016/j.arr.2014.09.004 Whitfield DR, Vallortigara J, Alghamdi A, Howlett D, Hortobagyi T, Johnson M, Attems J, Newhouse S, Ballard C, Thomas AJ, O’Brien JT, Aarsland D, Francis PT (2014) Assessment of ZnT3 and PSD95 protein levels in Lewy body dementias and Alzheimer’s disease: association with cognitive impairment. Neurobiol Aging 35(12):2836–2844. https://doi.org/10.1016/j.neurobiolaging.2014.06.015 Dore K, Carrico Z, Alfonso S, Marino M, Koymans K, Kessels HW, Malinow R (2021) PSD-95 protects synapses from β-amyloid. Cell Rep 35(9):109194. https://doi.org/10.1016/j.celrep.2021.109194 Leloup C, Arluison M, Kassis N, Lepetit N, Cartier N, Ferré P, Pénicaud L (1996) Discrete brain areas express the insulin-responsive glucose transporter GLUT4. Mol Brain Res 38(1):45–53. https://doi.org/10.1016/0169-328X(95)00306-D McNay EC, Pearson-Leary J (2020) GluT4: A central player in hippocampal memory and brain insulin resistance. Exp Neurol 323:113076. https://doi.org/10.1016/j.expneurol.2019.113076 Wu Y, Lu H, Yang H, Li C, Sang Q, Liu X, Liu Y, Wang Y, Sun Z (2016) Zinc stimulates glucose consumption by modulating the insulin signaling pathway in L6 myotubes: essential roles of Akt–GLUT4, GSK3β and mTOR–S6K1. J Nutr Biochem 34:126–135. https://doi.org/10.1016/j.jnutbio.2016.05.008 Choi BY, Hong DK, Jeong JH, Lee BE, Koh JY, Suh SW (2020) Zinc transporter 3 modulates cell proliferation and neuronal differentiation in the adult hippocampus. Stem Cells 38(8):994–1006. https://doi.org/10.1002/stem.3194 Sindreu C, Palmiter RD, Storm DR (2011) Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory. Proc Natl Acad Sci 108(8):3366–3370. https://doi.org/10.1073/pnas.1019166108 Hwang J-w, Yao H, Caito S, Sundar IK, Rahman I (2013) Redox regulation of SIRT1 in inflammation and cellular senescence. Free Radic Biol Med 61:95–110. https://doi.org/10.1016/j.freeradbiomed.2013.03.015 Herskovits AZ, Guarente L (2014) SIRT1 in neurodevelopment and brain senescence. Neuron 81(3):471–483. https://doi.org/10.1016/j.neuron.2014.01.028 Rizzi L, Roriz-Cruz M (2018) Sirtuin 1 and Alzheimer’s disease: an up-to-date review. Neuropeptides 71:54–60. https://doi.org/10.1016/j.npep.2018.07.001 Michán S, Li Y, Chou MM-H, Parrella E, Ge H, Long JM, Allard JS, Lewis K, Miller M, Xu W (2010) SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci 30(29):9695–9707. https://doi.org/10.1523/JNEUROSCI.0027-10.2010 Wang J, Fivecoat H, Ho L, Pan Y, Ling E (1804) Pasinetti GM (2010) The role of Sirt1: at the crossroad between promotion of longevity and protection against Alzheimer’s disease neuropathology. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 8:1690–1694. https://doi.org/10.1016/j.bbapap.2009.11.015 Tanila H (2017) The role of BDNF in Alzheimer’s disease. https://doi.org/10.1016/j.nbd.2016.05.008 Frazzini V, Granzotto A, Bomba M, Massetti N, Castelli V, d’Aurora M, Punzi M, Iorio M, Mosca A, Pizzi SD (2018) The pharmacological perturbation of brain zinc impairs BDNF-related signaling and the cognitive performances of young mice. Sci Rep 8(1):1–12. https://doi.org/10.1038/s41598-018-28083-9 Darcq E, Warnault V, Phamluong K, Besserer GM, Liu F, Ron D (2015) MicroRNA-30a-5p in the prefrontal cortex controls the transition from moderate to excessive alcohol consumption. Mol Psychiatry 20(10):1240–1250. https://doi.org/10.1038/mp.2014.120 Peineau S, Taghibiglou C, Bradley C, Wong TP, Liu L, Lu J, Lo E, Wu D, Saule E, Bouschet T (2007) LTP inhibits LTD in the hippocampus via regulation of GSK3β. Neuron 53(5):703–717. https://doi.org/10.1016/j.neuron.2007.01.029