Vai trò của hormone glucocorticoid trong tác động bảo vệ chống stress của Postconditioning hạ oxy trong các mô hình trầm cảm và rối loạn stress sau chấn thương ở chuột

Springer Science and Business Media LLC - Tập 51 - Trang 757-764 - 2021
M. Y. Zenko1, E. A. Rybnikova1
1Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia

Tóm tắt

Các tác động của việc sử dụng postconditioning hạ oxy hạ áp neuroprotective (PostC) đã được nghiên cứu trong hai mô hình thí nghiệm: rối loạn stress sau chấn thương do stress - tái stress và trầm cảm do không thể học hỏi ở chuột. PostC (360 mmHg, 2 giờ) được áp dụng trong ba phiên liên tiếp với khoảng cách 24 giờ, phiên đầu tiên diễn ra 24 giờ sau khi bị stress tâm lý cảm xúc gây bệnh. Các bài kiểm tra hành vi trong môi trường mở và mê cung nâng cao cho thấy PostC có tác dụng chống trầm cảm và lo âu. Cùng với các triệu chứng hành vi, sự sai lệch trong mức corticosterone máu cơ bản đặc trưng cho từng loại bệnh lý và sự điều chỉnh độ nhạy cảm miễn dịch đối với thụ thể glucocorticoid (GR) và corticoliberin (CL) ở hồi hải mã đã được đảo ngược sau khi sử dụng PostC. Các nghiên cứu sử dụng tiêm thuốc ức chế tổng hợp hormone glucocorticoid metyrapone cho thấy các tác động chống trầm cảm và lo âu của PostC hạ áp ở các mô hình rối loạn lo âu - trầm cảm sau stress là do hormone glucocorticoid trung gian.

Từ khóa

#stress #trầm cảm #rối loạn stress sau chấn thương #hormone glucocorticoid #điều kiện hạ oxy hạ áp

Tài liệu tham khảo

Ali, Z. A., Callaghan, C. J., Lim, E., et al., “Remote ischemic preconditioning reduces myocardial and renal injury after elective abdominal aortic aneurysm repair: a randomized controlled trial,” Circulation, 116, No. 11, 1–98 (2007). Armario, A., Castellanos, J. M., and Balasch, J., “Effect of chronic noise on corticotropin function and on emotional reactivity in adult rats,” Neuroendocrinol. Lett., 6, No. 2, 121–127 (1984). Arumugam, T. V., Gleichmann, M., Tang, S. C., and Mattson, M. P., “Hormesis/preconditioning mechanisms, the nervous system and aging,” Ageing Res. Rev., 5, No. 2, 165–178 (2006). Axelson, D. A., Doraiswamy, P. M., McDonald, W. M., et al., “Hypercortisolemia and hippocampal changes in depression,” Psychiatry Res., 47, No. 2, 163–173 (1993). Baranova, K. A. and Zenko, M. Y., “The anxiolytic effect of remote ischemic pre- and postconditioning in a model of post-traumatic stress disorder,” Zh. Vyssh. Nerv. Deyat., 68, No. 5, 663–672 (2018). Bauer, M., Severus, E., Möller, H. J., and Young, A. H., “Task Force on Unipolar Depressive Disorders. Pharmacological treatment of unipolar depressive disorders: summary of WFSBP guidelines,” Int. J. Psychiatr. Clin. Pract., 21, No. 3, 166–176 (2017). Belyakov, A. V., Dudkin, K. N., Rybnikova, E. A., and Samoilov, M. O., Patent 2593345 RF, IPC A61M16/12, “A Means of improving cognitive functions,” subm. 10.21.2014; publ. 08.10.2016. Caligiuri, M. P. and Ellwanger, J., “Motor and cognitive aspects of motor retardation in depression,” J. Affect. Disord., 57, No. 1–3, 83–93 (2000). De Kloet, C., Vermetten, E., Geuze, E., et al., “Assessment of HPA-axis function in posttraumatic stress disorder: pharmacological and nonpharmacological challenge tests, a review,” J. Psychiatr. Res., 40, No. 6, 550–567 (2006). Fiszman, A., Mendlowicz, M. V., Marques-Portella, C., et al., “Peritraumatic tonic immobility predicts a poor response to pharmacological treatment in victims of urban violence with PTSD,” J. Affect. Disord., 107, No. 1–3, 193–197 (2008). Forbes, N. F., Stewart, C. A., Matthews, K., and Reid, I. C., “Chronic mild stress and sucrose consumption: validity as a model of depression,” Physiol. Behav., 60, No. 6, 1481–1484 (1996). Galea, S., Nandi, A., and Vlahov, D., “The epidemiology of post-traumatic stress disorder after disasters,” Epidemiol. Rev., 27, No. 1, 78–91 (2005). Gibson, O. R., Taylor, L., Watt, P. W., and Maxwell, N. S., “Crossadaptation: heat and cold adaptation to improve physiological and cellular responses to hypoxia,” Sports Med., 47, No. 9, 1751–1768 (2017). Gidday, J. M., Fitzgibbons, J. C., Shah, A. R., and Park, T. S., “Neuroprotection from ischemic brain injury by hypoxic preconditioning in the neonatal rat,” Neurosci. Lett., 168, No. 1–2, 221–224 (1994). Gillespie, C. F. and Nemeroff, C. B., “Hypercortisolemia and depression,” Psychosom. Med., 67, S26–S28 (2005). Greenberg, L., Edwards, E., and Henn, F. A., “Dexamethasone suppression test in helpless rats,” Biol. Psychiatry, 26, No. 5, 530–532 (1989). Gulyaeva, N. V., “Basic and translational aspects of stress reactivity of the ventral hippocampus: functional-biochemical mechanisms of altered neuroplasticity,” Neirokhimiya, 32, No. 2, 101–101 (2015). Hall, C. S., “Emotional behavior in the rat. III. The relationship between emotionality and ambulatory activity,” J. Comp. Psychol., 22, No. 3, 345 (1936). Harvey, B. H., Brand, L., Jeeva, Z., and Stein, D. J., “Cortical/hippocampal monoamines, HPA-axis changes and aversive behavior following stress and restress in an animal model of post-traumatic stress disorder,” Physiol. Behav., 87, No. 5, 881–890 (2006). Hays, S. J., Tobes, M. C., Gildersleeve, D. L., et al., “Structure-activity relationship study of the inhibition of adrenal cortical 11-betahydroxylase by new metyrapone analogs,” J. Med. Chem., 27, No. 1, 15–19 (1984). Hidaka, B. H., “Depression as a disease of modernity: explanations for increasing prevalence,” J. Affect. Disord., 140, No. 3, 205–214 (2012). Holtzheimer, P. E., Kelley, M. E., Gross, R. E., et al., “Subcallosal cingulate deep brain stimulation for treatment-resistant unipolar and bipolar depression,” JAMA Psychiatry, 69, No. 2, 150–158 (2012). Jacobson, L. and Sapolsky, R., “The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis,” Endocr. Rev., 12, No. 2, 118–134 (1991). Katz, R. J., Roth, K. A., and Carroll, B. J., “Acute and chronic stress effects on open field activity in the rat: implications for a model of depression,” Neurosci. Biobehav. Rev., 5, No. 2, 247 (1981). Keller, J., Gomez, R., Williams, G., et al., “HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition,” Mol. Psychiatry, 22, No. 4, 527–536 (2017). Klaperski, S., von Dawans, B., Heinrichs, M., and Fuchs, R., “Does the level of physical exercise affect physiological and psychological responses to psychosocial stress in women?” Psychol. Sport. Exerc., 14, No. 2, 266–274 (2013). Lee, B. J., Gibson, O. R., Thake, C. D., et al., “Cross adaptation and cross tolerance in human health and disease,” Front. Physiol., 9, 1827 (2019). Liberzon, I., Krstov, M., and Young, E. A., “Stress-restress: effects on ACTH and fast feedback,” Psychoneuroendocrinology, 22, No. 6, 443–453 (1997). Lima, B. F. R., Alencar, A. A., Carneiro, D. M., et al., “The efficiency of electroconvulsive therapy in the treatment of depression in the elderly,” Int. Arch. Med., 8 (2015). Lopez-Duran, N. L., Kovacs, M., and George, C. J., “Hypothalamicpituitary-adrenal axis dysregulation in depressed children and adolescents: A meta-analysis,” Psychoneuroendocrinology, 34, No. 9, 1272–1283 (2009). López-Rubalcava, C. and Lucki, I., “Strain differences in the behavioral effects of antidepressant drugs in the rat forced swimming test,” Neuropsychopharmacology, 22, No. 2, 191–199 (2000). Lunt, H. C., Barwood, M. J., Corbett, J., Tipton, M. J., “’Cross-adaptation’: habituation to short repeated cold-water immersions affects the response to acute hypoxia in humans,” J. Physiol., 588, No. 18, 3605– 3613 (2010). Meerson, F., Pozharov, V., and Minyailenko, T., “Superresistance against hypoxia after preliminary adaptation to repeated stress,” Appl. Physiol., 76, No. 5, 1856–1861 (1994). Meewisse, M. L., Reitsma, J. B., De Vries, G. J., et al., “Cortisol and post-traumatic stress disorder in adults: systematic review and meta-analysis,” Br. J. Psychiatry, 191, No. 5, 387–392 (2007). Mefferd, J. R. R. B. and Hale, H. B., “Effects of abrupt temperature changes on excretion characteristics of rats acclimated to cold, neutral or hot environments,” Am. J. Physiol., 195, No. 3, 726–734 (1958). Mehta, D. and Binder, E. B., “Gene × environment vulnerability factors for PTSD: the HPA-axis,” Neuropharmacology, 62, No. 2, 654–662 (2012). Morris, M. C., Compas, B. E., and Garber, J., “Relations among posttraumatic stress disorder, comorbid major depression, and HPA function: a systematic review and meta-analysis,” Clin. Psychol. Rev., 32, No. 4, 301–315 (2012). Murry, C. E., Jennings, R. B., and Reimer, K. A., “Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium,” Circulation, 74, No. 5, 1124–1136 (1986). Pariante, C. M. and Lightman, S. L., “The HPA axis in major depression: classical theories and new developments,” Trends Neurosci., 31, No. 9, 464–468 (2008). Paxinos, G. and Watson, C., The Rat Brain in Stereotaxic Coordinates, Elsevier (2006). Pellow, S., Chopin, P., File, S. E., and Briley, M., “Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat,” J. Neurosci. Meth., 14, No. 3, 149–167 (1985). Price, M. L., Kirby, L. G., Valentino, R. J., and Lucki, I., “Evidence for corticotropin-releasing factor regulation of serotonin in the lateral septum during acute swim stress: adaptation produced by repeated swimming,” Psychopharmacology, 162, No. 4, 406–414 (2002). Raone, A., Cassanelli, A., Scheggi, S., et al., “Hypothalamus-pituitaryadrenal modifications consequent to chronic stress exposure in an experimental model of depression in rats,” Neuroscience, 146, No. 4, 1734–1742 (2007). Rybnikova, E. A., Mironova, V. I., Pivina, S. G., et al., “Hormonal mechanisms of hypoxic preconditioning in rats,” Dokl. Ros. Akad. Nauk., 421, No. 5, 713–715 (2008). Rybnikova, E. A., Samoilov, M. O., Mironova, V. I., et al., “The potential of using hypoxic preconditioning for the prophylaxis of poststress depressive episodes,” Zh. Nevrol. Psikhiatr., 107, No. 7, 43–48 (2007a). Rybnikova, E., Mironova, V., Pivina, S., et al., “Antidepressant-like effects of mild hypoxia preconditioning in the learned helplessness model in rats,” Neurosci. Lett., 417, No. 3, 234–239 (2007b). Seligman, M. E. and Beagley, G., “Learned helplessness in the rat,” J. Comp. Physiol. Psychol., 88, No. 2, 534 (1975). Shalev, A. Y., Peri, T., Canetti, L., and Schreiber, S., “Predictors of PTSD in injured trauma survivors: a prospective study,” Am. J. Psychiatry, 153, No. 2, 219–225 (2006). Sheynin, J. and Liberzon, I., “Circuit dysregulation and circuit-based treatments in posttraumatic stress disorder,” Neurosci. Lett., 649, 133–138 (2017). Toropova, K. A. and Anokhin, K. V., “Modeling of post-traumatic stress disorder in mice: nonlinear dependence on the strength of the traumatic action,” Zh. Vyssh. Nerv. Deyat., 68, No. 3, 378–394 (2018). Vinten-Johansen, J., Zhao, Z. Q., Jiang, R., et al., “Preconditioning and postconditioning: innate cardioprotection from ischemia-reperfusion injury,” J. Appl. Physiol., 103, No. 4, 1441–1448 (2007). Vollmayr, B., Faust, H., Lewicka, S., and Henn, F., “A Brain-derived neurotrophic factor (BDNF) stress response in rats bred for learned helplessness,” Mol. Psychiatry, 6, No. 4, 471–474 (2001). Walf, A. A. and Frye, C. A., “The use of the elevated plus maze as an assay of anxiety-related behavior in rodents,” Nat. Protoc., 2, No. 2, 322–328 (2007). Willner, P., “Validation criteria for animal models of human mental disorders: learned helplessness as a paradigm case,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 10, No. 6, 677–690 (1986). World Health Organization, Depression and Other Common Mental Disorders: Global Health Estimates, WHO, Geneva (2017). World Health Organization, ICD-11 Alpha. Content Model Reference Guide, WHO, Geneva (2011). Yehuda, R. and Le Doux, J., “Response variation following trauma: a translational neuroscience approach to understanding PTSD,” Neuron, 56, No. 1, 19–32 (2007). Yehuda, R., “Neuroendocrine aspects of PTSD,” Anx. Anxiolyt. Drugs, 371–403 (2005). Yehuda, R., Bierer, L. M., Schmeidler, J., et al., “Low cortisol and risk for PTSD in adult offspring of holocaust survivors,” Am. J. Psychiatry, 157, No. 8, 1252–1259 (2000). Yehuda, R., Kahana, B., Binder-Brynes, K., et al., “Low urinary cortisol excretion in holocaust survivors with posttraumatic stress disorder,” Am. J. Psychiatry, 152, No. 7, 982–986 (1995). Zenko, M. Y. and Rybnikova, E. A., “Antidepressant-like action of hypoxic postconditioning is accompanied by the up-regulation of hippocampal HIF-1α and erythropoietin,” Med. Ac. J., 19, No. 4, 41–46 (2019b). Zenko, M. Y. and Rybnikova, E. A., “Cross-adaptation: From F. Z. Meerson to the present day. Part 1. Adaptation, cross-adaptation, and crosssensitization,” Usp. Fiziol. Nauk., 50, No. 4, 3–13 (2019a). Zenko, M. Y., Baranova, K. A., and Rybnikova, E. A., “Pathogenetic role of the stress-induced release of glucocorticoid hormones in the development of posttraumatic stress disorder: an experimental study,” Dokl. Biol. Sci., 479, No. 1, 51–53 (2018). Zenko, M. Y., Rybnikova, E. A., and Glushchenko, T. S., “Expression of neurotrophin BDNF in the hippocampus and neocortex in rats on formation of poststress anxiety states and its correction by hypoxic postconditioning,” Morfologiya, 146, No. 5, 14–18 (2014). Zhao, Z. Q., Corvera, J. S., Halkos, M. E., et al., “Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning,” Am. J. Physiol., 285, No. 2, H579–H588 (2003).