The Role of Chondrocyte Morphology and Volume in Controlling Phenotype—Implications for Osteoarthritis, Cartilage Repair, and Cartilage Engineering
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hunziker EB, Lippuner K, Keel MJB, Shintani N. An educational review of cartilage repair: precepts & practice—myths & misconceptions—progress & prospects. Osteoarth Cart. 2015;23:334–50. https://doi.org/10.1016/j.joca.2014.12.011 .
Pitsillides AA, Beier F. Cartilage biology in osteoarthritis – lessons from developmental biology. Nat Rev Rheumatol. 2011;7:654–63. https://doi.org/10.1038/nrrheum.2011.12.9 .
Aigner T, Soder S, Gebhard PM, McAlinden A, Haag J. Mechanisms of disease: role of chondrocytes in the pathogenesis of osteoarthritis – structure, chaos and senescence. Nature Rheumatol. 2007;3(7):391–9. https://doi.org/10.1038/ncprheum0534 .
•• Graceffa V, Vinatier C, Guicheux J, Stoddart M, Alini M, Zeugolis DI. Chasing chimeras – the elusive stable chondrogenic phenotype. Biomaterials 2019:192;199–192;235. https://doi.org/10.1016/j.biomaterials.2018.11.014 . An important review which highlights the importance of a stable chondrocyte phenotype in maintaining hyaline-like matrix.
Burg MB, Ferraris JD, Dmitrieva NI. Cellular response to hyperosmotic stresses. Physiol Rev. 2007;87:1441–74.
Dubois JM, Rouzaire-Dubois B. Roles of cell volume in molecular and cellular biology. Prog Biophys Mol Biol. 2012;108(3):93–7. https://doi.org/10.1016/j.pbiomolbio.2011.12.001 .
Hunziker EB. Articular cartilage structure in humans and experimental animals. In: Kuettner KE, Schleyerbach R, Peyron JG, Hascall VC, editors. Articular cartilage and osteoarthritis. New York: Raven Press; 1992. p. 183–99.
Bush PG, Hall AC. The volume and morphology of chondrocytes within non-degenerate and degenerate human articular cartilage. Osteoarth Cart. 2003;11:242–51.
Benya PD, Padilla SR, Nimni ME. Independent regulation of collagen types by chondrocytes during the loss of differentiation function in culture. Cell. 1978;15:1313–21.
Benya PD, Shaffer JD. Dedifferentiated chondrocytes re-express the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982;30:215–24.
Bonaventure J, Kadhom N, Cohen-Solal L, Ng KH, Bourguignon J, Lasselin C, et al. Re-expression of cartilage-specific genes by de-differentiated human articular chondrocytes cultured in alginate beads. Exper Cell Res. 1994;212(1):97–104. https://doi.org/10.1006/excr.1994.1123 .
Schultz-Tanzil G, de Souza P, Villegas Castrejon H, John T, Merker HJ, Scheid A, et al. Redifferentiation of dedifferentiated human chondrocytes in high-density cultures. Cell Tiss Res. 2002;308:371–9. https://doi.org/10.1007/s00441-002-0562-7 .
Brown PD, Benya PD. Alterations in chondrocyte cytoskeletal architecture during phenotypic modulation by retinoic acid and dihydrocytochalasin B-induced re-expression. J Cell Biol. 1988:106;171–89.
Blaine EJ. Involvement of the cytoskeletal elements in articular cartilage homeostasis and pathology. Int J Exp Path. 2009;90:90;1–15. https://doi.org/10.1111/j.1365-2613.2008.00625.x .
Park EH, Kang SS, Lee YS, Kim SJ, Jin EJ, Tak EN, et al. Integrity of the cortical actin ring is required for the activation of the PI3K/Akt and p38 MAPK signalling pathways in re-differentiation of chondrocytes in chitosan. Cell Biol Int. 2008;32(10):1272–8. https://doi.org/10.1016/j.cellbi.2008.07.013 .
Rottmar M, Mhanna R, Guidmond-Lischer S, Vogel V, Zenobi-Wong M, Maniura-Weber K. Interference with the contractile machinery of the fibroblastic cytoskeleton induces re-expression of the cartilage phenotype through involvement of PI3K, PKC and MAPKs. Exp Cell Res. 2014;320:175–87. https://doi.org/10.1016/j.yexcr.2013.11.004 .
Woods A, Wang G, Beier F. Regulation of chondrocyte differentiation by the actin cytoskeleton and adhesive interactions. J Cell Physiol. 2007;213:1–8.
Ashraf S, Cha BH, Kim JS, Ahn J, Han I, Park H, et al. Regulation of senescence associated signaling mechanisms in chondrocytes for cartilage tissue regeneration. Osteoarth Cart. 2016;24(2):196–205. https://doi.org/10.1016/j.joca.2015.07.008 .
Novakofski KD, Torre CJ, Fortier LA. Interleukin-1α, -6 and -8 decrease Cdc42 activity resulting in loss of articular chondrocyte phenotype. J Orthop Res. 2011;30(2):246–51. https://doi.org/10.1002/jor.21515 .
Parreno J, Niaki MN, Andrejevic K, Jiang A, Wu P-H, Kandel RA. Interplay between cytoskeletal polymerisation and the chondrogenic phenotype in chondrocytes passaged in monolayer culture. J Anat. 2017;230(2):234–48. https://doi.org/10.1111/joa.12554 .
Hui A, Min WX, Tang J, Cruz TF. Inhibition of activator protein 1 activity by paclitaxel suppresses interleukin-1-induced collagenase and stromelysin expression by bovine chondrocytes. Arth Rheum. 1998;41:869–76.
Lambrecht S, Verbruggen G, Verdonk PCM, Elewaut D, Deforce D. Differential proteome analysis of normal and osteoarthritic chondrocytes reveals distortion of vimentin network in osteoarthritis. Osteoarth Cart. 2008;16:163–73. https://doi.org/10.1016/j.joca.2007.06.005 .
Loqman MY, Bush PG, Farquharson C, Hall AC. A cell shrinkage artefact in growth plate chondrocytes with common fixative solutions: importance of fixative osmolarity for maintaining morphology. Eur Cell Mater. 2010;19:214–27.
Errington RJ, Fricker MD, Wood JL, Hall AC, White NS. Four-dimensional imaging of living chondrocytes in cartilage using confocal microscopy: a pragmatic approach. Amer J Physiol. 1997;272(Cell Physiol.41):C1040–51.
Bush PG, Wokosin DL, Hall AC. Two-versus one photon excitation laser scanning microscopy: critical importance of excitation wavelength. Front Biosci. 2007;12:2646–57.
Jones CW, Smolinski D, Keogh A, Kirk TB, Zheng MH. Confocal laser scanning microscopy in orthopaedic research. Prog Histochem Cytochem. 2005;40:1–71.
• Karim A, Amin AK, Hall AC. The clustering and morphology of chondrocytes in normal and mildly-degenerate human femoral head cartilage studied by confocal laser scanning microscopy. J Anat. 2018;232(4):686–98. https://doi.org/10.1111/joa.12768 A detailed study using high-resolution confocal microscopy demonstrating the variety of chondrocyte shapes in human femoral head cartilage.
Kouri JB, Arguello C, Luna J, Mena R. Use of microscopical techniques in the study of human chondrocytes from osteoarthritic cartilage: an overview. Microsc Res Tech. 1998;40:22–36.
Tesche F, Miosge N. New aspects of the pathogenesis of osteoarthritis: the role of fibroblast-like chondrocytes in late stages of the disease. Histol Histopathol. 2005:20;329–37.
Holloway I, Kayser M, Lee DA, Bader DL, Bentley G, Knight MM. Increased presence of cells with multiple elongated processes in osteoarthritic femoral head cartilage. Osteoarth Cart. 2004;12:17–24. https://doi.org/10.1016/joca.2003.09.001 .
Murray DH, Bush PG, Brenkel IJ, Hall AC. Abnormal human chondrocyte morphology is related to increased levels of cell-associated IL-1β and disruption to pericellular collagen type VI. J Orthop Res. 2010;28(11):1507–14.
McGlashen SR, Cluett EC, Jensen CG, Poole CA. Primary cilia in osteoarthritic chondrocytes: from chondrons to clusters. Develop Dyn. 2008;237(8):2013–20. https://doi.org/10.1002/dvdy.21501 .
Zelenski NA, Leddy HA, Sanchez-Adams J, Zhang J, Bonaldo P, Liedtke W, et al. Type VI collagen regulates pericellular matrix properties, chondrocyte swelling and mechanotransduction in mouse articular cartilage. Arth Rheum. 2015;67(5):1286–94. https://doi.org/10.1002/art.39034 .
• Wilusz RE, Sanchez-Adams J, Guilak F. The structure and function of the pericellular matrix of articular cartilage. Matrix Biol. 2014;39C:25–32 An excellent review emphasising the importance of the pericellular matrix (PCM) and its critical role in controlling chondrocyte properties.
Lee GM, Paul TA, Slabaugh M, Kelley SS. The incidence of enlarged chondrons in normal and osteoarthritic human cartilage and their relative matrix density. Osteoarth Cart. 2000;8:44–52. https://doi.org/10.1053/joca.1999.0269 .
Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarth Cart. 2013;21:16–21. https://doi.org/10.1016/j.joca.2012.11.012 .
Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis – a disease of the joint as an organ. Arth Rheum. 2012;64(6):1697–707. https://doi.org/10.1002/art.34453 .
Li H, Wang D, Yuan Y, Min J. New insights on the MMP-13 regulatory network in the pathogenesis of early osteoarthritis. Arth Res Ther. 2017;19:248. https://doi.org/10.1186/s13075-017-1454-2 .
Karim A, Hall AC. Hyperosmolarity normalizes serum-induced changes to chondrocyte properties in a model of cartilage injury. Eur Cell Mater. 2016;31:205–20.
Kang W, Hall AC. Abnormal chondrocyte morphology following impact injury of bovine cartilage in the presence of fetal calf serum and its reversal by hyperosmolarity. Br Orthop Res Soc. 2017;P52.
Tew SR, Peffers MJ, McKay TR, Lowe ET, Khan WS, Hardingham TE, et al. Hyperosmolarity regulates SOX9 mRNA post-transcriptionally in human articular chondrocytes. Amer J Physiol. 2009;297(4):C898–906. https://doi.org/10.1152/ajpcell.00571.2008 .
Karim A, Hall AC. Chondrocyte morphology in stiff and soft agarose gels and the influence of fetal calf serum. J Cell Physiol. 2017;232:1041–52. https://doi.org/10.1002/jcp.25507 .
Lotz MK, Otsuki S, Grogan SP, Sah R, Terkeltaub R, D’Lima D. Cartilage cell clusters. Arth Rheum. 2010;62:2206–18. https://doi.org/10.1002/art.27528 .
Urban JPG, Hall AC, Gehl KA. Regulation of matrix synthesis rates by the ionic and osmotic environment of articular chondrocytes. J Cell Physiol. 1993;154:262–70.
Baumgarten M, Bloebaum RD, Ross SD, Campbell P, Sarmiento A. Normal human synovial fluid: osmolality and exercise-induced changes. J Bone Joint Surg Am. 1985;67-A:1336–9.
Shanfield S, Campbell P, Baumgarten M, Bloebaum R, Sarimiento A. Synovial fluid osmolarity in osteoarthritis and rheumatoid arthritis. Clin Orthop Related Res. 1988;235:289–95.
Ishihara H, Warensjo K, Roberts S, Urban JPG. Proteoglycan synthesis in the intervertebral disk nucleus: the role of extracellular osmolarity. Amer J Physiol. 1997;272:C1499–506.
Wuertz K, Urban JPG, Klasen J, Ignatius A, Wilke HJ, Claes L, et al. Influence of extracellular osmolarity and mechanical stimulation on gene expression of intervertebral disc cells. J Orthop Res. 2007;25:1513–22.
Lewis R, Feetham C, Barrett-Jolley R. Cell volume control in chondrocytes. Cell Physiol Biochem. 2011;28:1111–22.
Bush PG, Hall AC. The osmotic sensitivity of isolated and in situ bovine articular chondrocytes. J Orthop Res. 2001a;19:768–78.
Bush PG, Hall AC. Regulatory volume decrease (RVD) by isolated and in situ bovine articular chondrocytes. J Cell Physiol. 2001b;187:304–14.
Bush PG, Hall AC. Passive osmotic properties of in situ human articular chondrocytes within non-degenerate and degenerate cartilage. J Cell Physiol. 2005;204:309–19. https://doi.org/10.1002/jcp.20294 .
Mobasheri A, Marples D. Expression of the AQP-1 water channel in normal human tissues: a semiquantitative study using tissue array technology. Am J Physiol (Cell Physiol). 2004;286:C529–37. https://doi.org/10.1152/ajpcell.00408.2003 .
Mobasheri A, Trujillo E, Bell S, Carter SD, Clegg PD, Martin-Vasallo P, et al. Aquaporin water channels AQP1 and AQP3 are expressed in equine articular chondrocytes. Vet J. 2004;168(2):143–50.
Waterton JC, Solloway S, Foster JE, Keen MC, Gandy S, Middleton BJ, et al. Diurnal variation in the femoral articular cartilage of the knee in young adults. Mag Res Med. 2000;43:126–32.
Grushko G, Schneiderman R, Maroudas A. Some biochemical and biophysical parameters for the study of the pathogenesis of osteoarthritis: a comparison between the processes of ageing and degeneration in human hip cartilage. Connect Tissue Res. 1989;19:149–76.
Brocklehurst R, Bayliss MT, Maroudas A, Coysh HL, Freeman MAR, Revell PA, et al. The composition of normal and osteoarthritic articular cartilage from human knee joints with special reference to unicompartmental knee replacement and osteotomy of the knee. J Bone Joint Surg. 1984;66(1):95–106.
Watson PJ, Carpenter TA, Hall LD, Tyler JA. Cartilage swelling and loss in a spontaneous model of osteoarthritis visualised by magnetic resonance imaging. Osteoarth Cart. 1996;4:197–207. https://doi.org/10.1016/j.joca.2014.11.003 .
Maroudas A, Venn M. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. II. Swelling. Ann Rheum Dis. 1977;36:399–406.
Maroudas A, Ziv I, Weisman N, Venn MF. Studies of hydration and swelling pressure in normal and osteoarthritic cartilage. Biorheology. 1985;22:159–69.
Van der Kraan PM, Van den Berg WB. Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarth Cart. 2012;20:223–32. https://doi.org/10.1016/j.joca.211.12.003 .
Singh P, Marcu KB, Goldring MB, Otero M. Phenotypic instability of chondrocytes in osteoarthritis: on a path to hypertrophy. Ann N Y Acad Sci. 2018 Jul 15;1442:17–34. https://doi.org/10.1111/nyas.13930 .
Bush PG, Hodkinson PD, Hamilton GL, Hall AC. Viability and volume of in situ bovine articular chondrocytes - changes following a single impact and effects of medium osmolarity. Osteoarth Cart. 2005;13:54–65.
Schumacher BL, Su JL, Lindley KM, Kuettner KE, Cole AA. Horizontally-oriented clusters of multiple chondrons in the superficial zone of ankle, but not knee articular cartilage. Anat Rec. 2002;266:241–8. https://doi.org/10.1002/ar.10063 .
Rolauffs B, Williams JM, Aurich M, Grodzinsky AJ, Kuettner KE, Cole AA. Proliferative re-modelling of the spatial organisation of human superficial chondrocytes distant to focal early osteoarthritis (OA). Arth Rheum. 2010;62(2):489–98.
Hopewell B, Urban JPG. Adaptation of articular chondrocytes to changes in osmolality. Biorheol. 2003;40:73–7.
Xu X, Urban JPG, Tirlapur UK, Cui Z. Osmolarity effects on bovine articular chondrocytes during three dimensional culture in alginate beads. Osteoarth Cart. 2010;18:433–9. https://doi.org/10.1016/joca.2009.10.0003 .
Johnson ZI, Shapiro IM, Risbud MV. Extracellular osmolarity regulates matrix homeostasis in the intervertebral disc and articular cartilage: evolving role of TonEBP. Matrix Biol. 2014;40:10–6. https://doi.org/10.1016/j.matbio.2014.08.014 .
Sadowska A, Kameda T, Krupkova O, Wuertz-Kozak K. Osmosensing, osmosignalling and inflammation: how intervertebral disc cells respond to altered osmolarity. Eur Cell Mat. 2018;36:231–50. https://doi.org/10.22203/eCM.v036a17 .
De Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W. Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol. 2000;19:389–94.
Tew SR, Li Y, Pothacharoen P, Tweats LM, Hawkins RE, Hardingham TE. Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes. Osteoarth Cart. 2005;13:80–9.
Zhang Q, Ji Q, Wang X, Kang L, Fu Y, Yin Y, et al. ADAMTs-induced cartilage degeneration at the early stage of human osteoarthritis. Osteoarth Cart. 2015;23:2259–1168. https://doi.org/10.1016/j.joca.2015.06.014 .
Fukui N, Ikeda Y, Ohnuki T, Tanaka N, Hikita A, Mitomi H, et al. Regional differences in chondrocyte metabolism in osteoarthritis: a detailed analysis by laser capture micro-dissection. Arth Rheum. 2008:58(1);154–163. doi: https://doi.org/10.1002/art.23175 .
Hashimoto K, Otero M, Imagawa K, De Andres MC, Coico JM, Roach HI, et al. Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1β (IL1B) genes in chondrocytes depends on methylation of specific proximal promotor CpG sites. J Biol Chem. 2013(14):288:10061-10072. https://doi.org/10.1074/jbcM112.421156 .
Guilak F, Alexopoulos LG, Upton ML, Youn I, Choi JB, Cao L, et al. The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann N Y Acad Sci. 2006;1068:498–512. https://doi.org/10.1196/annals.1346.011 .
Karlsson C, Dehne T, Lindahl A, Brittberg M, Pruss A, Sittinger M, et al. Genome-wide expression profiling reveals new candidate genes associated with osteoarthritis. Osteoarth Cart. 2010;18(4):581–92. https://doi.org/10.1016/j.joca.2009.12.002 .
Kerrigan MJ, Hall AC. Control of chondrocyte regulatory volume decrease (RVD) by [Ca2+]i and cell shape. Osteoarth Cart. 2008;16(3):312–22.
Wang Z, Irianto J, Kazun S, Wang W, Knight MM. The rate of hypo-osmotic challenge influences regulatory volume decrease (RVD) and mechanical properties of articular chondrocytes. Osteoarth Cart. 2015;23:289–99.
Kerrigan MJP, Hook CSV, Qusous A, Hall AC. Regulatory volume increase (RVI) by in situ and isolated bovine articular chondrocytes. J Cell Physiol. 2006;209:481–92.
Bush PG, Pritchard M, Loqman MY, Damron TA, Hall AC. A key role for the membrane transporter NKCC1 in mediating chondrocyte volume increase in the mammalian growth. J Bone Miner Res. 2010;25(7):1594–603. https://doi.org/10.1002/jbmr.47 .
Pasantes-Morales H. Channels and volume changes in the life and death of the cell. Mol Pharm. 2016;90:358–70. https://doi.org/10.1124/mol.116.104158 .
Karjalainen HM, Qu C, Leskela SS, Rilla K, Lammi MJ. Chondrocytic cells express the taurine transporter on their plasma membrane and regulate its expression under anisotonic conditions. Amino Acids. 2015;47(3):561–70. https://doi.org/10.1007/s00726-014-1888-7 .
Rabbani G, Choi I. Roles of osmolytes in protein folding and aggregation of cells and their biotechnological application. Int J Macrobiol. 2018:109;483–91.
Boyd LM, Richardson WJ, Chen J, Kraus VB, Tewari A, Setton LA. Osmolarity regulates gene expression in intervertebral disc cells determined by gene array and real time RT-PCR. Ann Biomed Eng. 2005;33:1071–7.
Lang F, Hoffmann EK. Role of ion transport in control of apoptotic cell death. Compr Physiol. 2012;(2):2037–61. https://doi.org/10.1002/cphy.c110046 .
Lang F, Hoffmann EK. CrossTalk proposal: cell volume changes are an essential step in the cell death machinery. J Physiol. 2013;591(24):6119–21. https://doi.org/10.1113/physiol.2013.258632 .
Maeno E, Ishizaki Y, Kanaseki T, Hazama A, Okada Y. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc Natl Acad Sci U S A. 2000;97:9487–92.
Kumagai K, Imai S, Toyoda F, Okumura N, Isoya E, Matsuura H, et al. 17β-Estradiol inhibits the doxorubicin-induced apoptosis via block of volume-sensitive Cl- current in rabbit articular chondrocytes. Br J Pharmacol. 2012;166:702–20.
Maeno E, Takahashi N, Okada Y. Dysfunction of regulatory volume increase is a key component of apoptosis. FEBS Lett. 2006;580:6513–7.
Bortner CD, Hughes FM Jr, Cidlowski JA. A primary role for K+ and Na+ efflux in the activation of apoptosis. J Biol Chem 1997:272;32436–32442.
Mobasheri A, Lewis R, Ferreira-Mendes A, Rufino A, Dart C, Barrett-Jolley R. Potassium channels in articular chondrocytes. Channels. 2012;6(6):1–10. https://doi.org/10.4161/chan.22340 .
Yamamura H, Suzuki Y, Imaizumi Y. Physiological and pathological functions of Cl− channels in chondrocytes. Biol Pharm Bull. 2018;41:1145–51.
Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol. 2006;68:619–47. https://doi.org/10.1146/annurev.physiol.68.040204.100431 .
Krupkova O, Zvick J, Wuertz-Kozak K. The role of transient receptor potential channels in joint diseases. Eur Cells Mat. 2017;34:180–201.
Kumagai K, Toyoda F, Staunton CA, Maeda T, Okumura N, Matsuura H, et al. Activation of a chondrocyte volume-sensitive Cl− conductance prior to macroscopic cartilage lesion formation in the rabbit knee anterior cruciate ligament transection osteoarthritis model. Osteoarth Cart. 2016;24:1786–94. https://doi.org/10.1016/j.joca.2016.05.019 .
Heraud F, Heraud A, Harmand MF. Apoptosis in normal and osteoarthritic human articular cartilage. Ann Rheum Dis. 2000:59;959–65.
Paterson SI, Eltawil NM, Simpson AHRW, Amin AK, Hall AC. Drying of open animal joints in vivo subsequently causes cartilage degeneration. Bone Jt Res. 2016;5:137–44.
Hwang HS, Kim HA. Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int J Mol Sci. 2015;16:26035–54. https://doi.org/10.3390/ijms161125943 .
Lotz MK. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arth Res Ther. 2010;12:211. https://doi.org/10.1186/ar3046 .
Little CB, Zaki S. What constitutes an ‘animal model of osteoarthritis’ – the need for consensus. Osteo Cart. 2012;20:261–7. https://doi.org/10.1016/j.joca.2012.01.017 .
Cope PJ, Ourradi K, Li Y, Sharif M. Models of osteoarthritis: the good, the bad and the promising. Osteoarth Cart. 2019:IN PRESS. https://doi.org/10.1016/j.joca.2018.09.016 .
Gavenis K, Schumacher C, Schneider U, Eisfeld J, Mollenhauer J, Schmidt-Rohlfing B. Expression of ion channels of the TRP family in articular chondrocytes from osteoarthritic patients: changes between native and in vitro propagated chondrocytes. Mol Cell Biochem. 2009;321:135–43. https://doi.org/10.1007/s11010-008-9927-x .
Clarke AL, Votta BJ, Kumar S, Liedtke W, Guilak F. Chondroprotective role of the osmotically sensitive ion channel transient receptor potential vanilloid 4. Arth Rheum. 2010;62(10):2973–83. https://doi.org/10.1002/art.27624 .
O’Conor CJ, Ramalingam S, Zelenski NA, Benefield HC, Rigo I, Little D, et al. Cartilage-specific knockout of the mechanosensory ion channel TRPV4 decreases age-related osteoarthritis. Sci Reports. 2016;6:29053. https://doi.org/10.1038/srep29053 .
Phan MN, Leddy HA, Votta BJ, Kumar S, Levy DS, Lipshutz DB, et al. Functional characterisation of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arth Rheum. 2009;60:3028–37. https://doi.org/10.1002/art.24799 .
Song T, Ma J, Guo L, Yang P, Zhou X, Ye T. Regulation of chondrocyte functions by transient receptor potential cation channel V6 in osteoarthritis. J Cell Physiol. 2017;232:3170–81. https://doi.org/10.1002/jcp.25770 .
Muramatsu S, Wakabayashi M, Ohno T, Amano K, Ooishi R, Sugahara T, et al. Functional gene screening system identified TRPV4 as a regulator of chondrogenic differentiation. J Biol Chem. 2007;282:32158–67. https://doi.org/10.1074/jbc.M706158200 .
Van der Kraan PM. The changing role of TGFβ in healthy, ageing and osteoarthritic joints. Nat Rev Rheumatol. 2017;13:155–63. https://doi.org/10.1038/nrrheum.2016.219 .
Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH. Insulin-transferrin-selenium prevent human chondrocyte dedifferentiation and promote the formation of high quality tissue engineered human hyaline cartilage. Eur Cell Mat. 2005;9:58–67. https://doi.org/10.22203/eCM.v009a08 .
Schrobback K, Klein TJ, Crawford R, Upton Z, Malda J, Leavesley DI. Effects of oxygen and culture system on in vitro propagation and re-differentiation of osteoarthritic human articular chondrocytes. Cell Tissue Res. 2012;347:649–63.
Markway BD, Tan GK, Brooke G, Hudson JE, Cooper-White JJ, Doran MR. Enhanced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in low oxygen environment micropellet cultures. Cell Transplant. 2010;19:29–42.
Anderson DE, Johnstone B. Dynamic mechanical compression of chondrocytes for tissue engineering: a critical review. Front Bioeng Biotechnol. 2017;76(5). https://doi.org/10.3389/fbioe.2017.00076 .
Lin Y-C, Hall AC, Simpson AHRW. A novel joint organ culture model for evaluation of static and dynamic load on articular cartilage. Bone Jt Res. 2018;7(3):205–12. https://doi.org/10.1302/2046-3758.73BJR-2017-0320 .
Ylarinne JH, Qu C, Lammi MJ. Hypertonic conditions enhance cartilage formation in scaffold-free primary chondrocyte cultures. Cell Tiss Res. 2014;358:541–50. https://doi.org/10.1007/s00441-014-1970-1 .
Sampat R, Dermksian MV, Oungoulian SR, Winchester RJ, Bulinski JC, Ateshian GA, et al. Applied osmotic loading for promoting development of engineered cartilage. J Biomech. 2013;46:2674–81. https://doi.org/10.1016/j.jbiomech.2013.07.043 .
Caron MMJ, Van der Windt AE, Emans PJ, Van Rhijn LW, Jahr H, Welting TJM. Osmolarity determines the in vitro chondrogenic differentiation capacity of progenitor cells via nuclear factor of activated T-cells 5. Bone. 2013;53:94–102.
Ahmadyan S, Kabiri M, Hanaee-Ahvaz H, Farazmand A. Osmolyte type and the osmolarity level affect chondrogenesis of mesenchymal stem cells. Appl Biochem Biotechnol. 2018;185:507–23.
Bertram KL, Krawetz RJ. Osmolarity regulates chondrogenic differentiation potential of synovial fluid derived mesenchymal progenitor cells. Biochem Biophys Res Comms. 2012;422:455–61. https://doi.org/10.1016/j.bbrc.2012.05.015 .
Eltawil NM, Howie SEM, Simpson AHRW, Amin AK, Hall AC. The use of hyperosmotic saline for chondroprotection: implications for orthopaedic surgery and cartilage repair. Osteoarth Cart. 2015;23:469–77.