Vai trò của tính linh hoạt trong ngành ô tô trong việc hỗ trợ sự lan tỏa của các sáng kiến di chuyển bền vững: Đánh giá quan điểm của các bên liên quan

Global Journal of Flexible Systems Management - Tập 24 - Trang 459-481 - 2023
Idiano D’Adamo1, Massimo Gastaldi2, Jacopo Piccioni3, Paolo Rosa4
1Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
2Department of Industrial Engineering, Information and Economics, University of L’Aquila, L’Aquila, Italy
3Sapienza University of Rome, Rome, Italy
4Department of Management, Economics and Industrial Engineering, Politecnico di Milano, Milan, Italy

Tóm tắt

Dù Ủy ban châu Âu đang hành động chống lại biến đổi khí hậu, lượng khí thải nhà kính vẫn đang gia tăng trong lĩnh vực giao thông. Trong bối cảnh này, sự linh hoạt đặc trưng của ngành ô tô có thể đảo ngược xu hướng tiêu cực này. Mục tiêu của nghiên cứu này là xác định các phương pháp phù hợp để đánh giá các sáng kiến linh hoạt trong bối cảnh ô tô, với trọng tâm cụ thể vào di chuyển bền vững và xe điện (EVs). Kết quả cho thấy các bên liên quan xác định giá mua là yếu tố quyết định trong sự lựa chọn mua một chiếc EV, trong khi đối với một mô hình hướng tới việc chuyển đổi di chuyển điện bền vững, các chuyên gia nhấn mạnh đến việc sản xuất năng lượng tái tạo và người tiêu dùng chú trọng đến các trạm sạc. Một cách tiếp cận linh hoạt trong các lựa chọn chính sách cũng được gợi ý nhằm thúc đẩy một mô hình bền vững thực tiễn, trong đó việc triển khai các xe điện được kèm theo các thực tiễn xanh và tuần hoàn. Tuy nhiên, sự thay đổi này cũng yêu cầu phải chú ý đến lĩnh vực xã hội với việc tạo ra việc làm và lan rộng kiến thức của người tiêu dùng về các lựa chọn bền vững.

Từ khóa

#biến đổi khí hậu #khí thải nhà kính #di chuyển bền vững #xe điện #các bên liên quan #chính sách #năng lượng tái tạo

Tài liệu tham khảo

Abid, M., Tabaa, M., Chakir, A., & Hachimi, H. (2022). Routing and charging of electric vehicles: Literature review. Energy Reports, 8, 556–578. https://doi.org/10.1016/j.egyr.2022.07.089 Adu-Gyamfi, G., Song, H., Obuobi, B., Nketiah, E., Wang, H., & Cudjoe, D. (2022). Who will adopt? Investigating the adoption intention for battery swap technology for electric vehicles. Renewable and Sustainable Energy Reviews, 156, 111979. https://doi.org/10.1016/j.rser.2021.111979 Alex, A. P., Manju, V. S., Hima, V., & Peter, L. (2022). Assessment of sustainable mobility indicators for an emerging satellite city in India. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-022-02466-5 Almansour, M. (2022). Electric vehicles (EV) and sustainability: Consumer response to twin transition, the role of e-businesses and digital marketing. Technology in Society, 71, 102135. https://doi.org/10.1016/j.techsoc.2022.102135 Arribas-Ibar, M., Nylund, P. A., & Brem, A. (2021). The risk of dissolution of sustainable innovation ecosystems in times of crisis: The electric vehicle during the COVID-19 pandemic. Sustainability, 13(3), 1319. https://doi.org/10.3390/su13031319 Atici, C. (2022). Reconciling the flexibility mechanisms of climate policies towards the inclusiveness of developing countries: Commitments and prospects. Environment, Development and Sustainability, 24(7), 9048–9067. https://doi.org/10.1007/s10668-021-01834-x Baars, J., Domenech, T., Bleischwitz, R., Melin, H. E., & Heidrich, O. (2021). Circular economy strategies for electric vehicle batteries reduce reliance on raw materials. Nature Sustainability, 4(1), 71–79. https://doi.org/10.1038/s41893-020-00607-0 Banister, D. (2008). The sustainable mobility paradigm. Transport Policy, 15(2), 73–80. https://doi.org/10.1016/j.tranpol.2007.10.005 Bardal, K. G., Gjertsen, A., & Reinar, M. B. (2020). Sustainable mobility: Policy design and implementation in three Norwegian cities. Transportation Research Part D: Transport and Environment, 82, 102330. https://doi.org/10.1016/j.trd.2020.102330 Bryła, P., Chatterjee, S., & Ciabiada-Bryła, B. (2023). Consumer adoption of electric vehicles: A systematic literature review. Energies, 16(1), 205. https://doi.org/10.3390/en16010205 Colasante, A., D’Adamo, I., & Morone, P. (2022). What drives the solar energy transition? The effect of policies, incentives and behavior in a cross-country comparison. Energy Research & Social Science, 85, 102405. https://doi.org/10.1016/j.erss.2021.102405 Cozza, G., D’Adamo, I., & Rosa, P. (2023). Circular manufacturing ecosystems: Automotive printed circuit boards recycling as an enabler of the economic development. Production & Manufacturing Research, 11(1), 2182837. https://doi.org/10.1080/21693277.2023.2182837 D’Adamo, I. (2022). The analytic hierarchy process as an innovative way to enable stakeholder engagement for sustainability reporting in the food industry. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-022-02700-0 D’Adamo, I., & Rosa, P. (2019). A structured literature review on obsolete electric vehicles management practices. Sustainability, 11(6876), 1–17. https://doi.org/10.3390/su11236876 D’Adamo, I., Gastaldi, M., & Ozturk, I. (2023). The sustainable development of mobility in the green transition: Renewable energy, local industrial chain, and battery recycling. Sustainable Development, 31(2), 840–852. https://doi.org/10.1002/sd.2424 Danielis, R., Rotaris, L., Giansoldati, M., & Scorrano, M. (2020). Drivers’ preferences for electric cars in Italy. Evidence from a country with limited but growing electric car uptake. Transportation Research Part a: Policy and Practice, 137, 79–94. https://doi.org/10.1016/j.tra.2020.04.004 De Santis, M., Silvestri, L., & Forcina, A. (2022). Promoting electric vehicle demand in Europe: Design of innovative electricity consumption simulator and subsidy strategies based on well-to-wheel analysis. Energy Conversion and Management, 270, 116279. https://doi.org/10.1016/j.enconman.2022.116279 DENA. (2011). The role of natural gas and biomethane in the fuel mix of the future in Germany. https://www.dena.de/en/home/. Accessed 5 June 2019 Dong, Y. (2022). Analysis of consumers’ willingness to accept of government subsidies for electric vehicles. Transportation Research Procedia, 61, 90–97. https://doi.org/10.1016/j.trpro.2022.01.016 Dwivedi, A., Agrawal, D., Jha, A., Gastaldi, M., Paul, S. K., & D’Adamo, I. (2021). Addressing the challenges to sustainable initiatives in value chain flexibility: Implications for sustainable development goals. Global Journal of Flexible Systems Management, 22, 179–197. https://doi.org/10.1007/s40171-021-00288-4 European Commission. (2021). Providing efficient, safe and environmentally friendly transport. https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/transport-and-green-deal_en. Accessed 9 April 2023 European Commission. (2023). Carbon Border Adjustment Mechanism. https://taxation-customs.ec.europa.eu/carbon-border-adjustment-mechanism_en. Accessed 1 July 2023 European Environment Agency. (2022). Greenhouse gas emissions from transport in Europe. https://www.eea.europa.eu/ims/greenhouse-gas-emissions-from-transport. Accessed 9 April 2023 European Environment Agency. (2023). Transport and mobility. https://www.eea.europa.eu/en/topics/in-depth/transport-and-mobility#:~:text=Transport is responsible for about,noise pollution and habitat fragmentation. Accessed 9 April 2023 Franzò, S., Nasca, A., & Chiesa, V. (2022). Factors affecting cost competitiveness of electric vehicles against alternative powertrains: A total cost of ownership-based assessment in the Italian market. Journal of Cleaner Production, 363, 132559. https://doi.org/10.1016/j.jclepro.2022.132559 Gerbeti, A. (2021). Market mechanisms for reducing emissions and the introduction of a flexible consumption tax. Global Journal of Flexible Systems Management, 22, 161–178. https://doi.org/10.1007/s40171-021-00283-9 Giansoldati, M., Danielis, R., Rotaris, L., & Scorrano, M. (2018). The role of driving range in consumers’ purchasing decision for electric cars in Italy. Energy, 165, 267–274. https://doi.org/10.1016/j.energy.2018.09.095 Gulzari, A., Wang, Y., & Prybutok, V. (2022). A green experience with eco-friendly cars: A young consumer electric vehicle rental behavioral model. Journal of Retailing and Consumer Services, 65, 102877. https://doi.org/10.1016/j.jretconser.2021.102877 Guo, Z., Li, T., Shi, B., & Zhang, H. (2022). Economic impacts and carbon emissions of electric vehicles roll-out towards 2025 goal of China: An integrated input-output and computable general equilibrium study. Sustainable Production and Consumption, 31, 165–174. https://doi.org/10.1016/j.spc.2022.02.009 Gupta, L., & Shankar, R. (2022). Adoption of battery management system in utility grid: An empirical study using structural equation modeling. Global Journal of Flexible Systems Management, 23(4), 573–596. https://doi.org/10.1007/s40171-022-00319-8 Hoeft, F. (2021). Internal combustion engine to electric vehicle retrofitting: Potential customer’s needs, public perception and business model implications. Transportation Research Interdisciplinary Perspectives, 9, 100330. https://doi.org/10.1016/j.trip.2021.100330 Huang, X., Lin, Y., Lim, M. K., Zhou, F., Ding, R., & Zhang, Z. (2022). Evolutionary dynamics of promoting electric vehicle-charging infrastructure based on public–private partnership cooperation. Energy, 239, 122281. https://doi.org/10.1016/j.energy.2021.122281 Ippolito, N. M., Passadoro, M., Ferella, F., Pellei, G., & Vegliò, F. (2023). Recovery of metals from printed circuit boards by gold-REC 1 hydrometallurgical process. Sustainability, 15(9), 7348. https://doi.org/10.3390/su15097348 Jain, V., & Raj, T. (2013). Ranking of flexibility in flexible manufacturing system by using a combined multiple attribute decision making method. Global Journal of Flexible Systems Management, 14(3), 125–141. https://doi.org/10.1007/s40171-013-0038-5 Jaiswal, D., Kaushal, V., Kant, R., & Kumar Singh, P. (2021). Consumer adoption intention for electric vehicles: Insights and evidence from Indian sustainable transportation. Technological Forecasting and Social Change, 173, 121089. https://doi.org/10.1016/j.techfore.2021.121089 Jaiswal, D., Kant, R., Singh, P. K., & Yadav, R. (2022). Investigating the role of electric vehicle knowledge in consumer adoption: Evidence from an emerging market. Benchmarking: An International Journal, 29(3), 1027–1045. https://doi.org/10.1108/BIJ-11-2020-0579 Jasiński, D., Meredith, J., & Kirwan, K. (2021). Sustainable development model for measuring and managing sustainability in the automotive sector. Sustainable Development, 29(6), 1123–1137. https://doi.org/10.1002/sd.2207 Jin, G., Meng, Q., & Feng, W. (2022). Optimization of logistics system with fuzzy FMEA-AHP methodology. Processes, 10(10), 1973. https://doi.org/10.3390/pr10101973 Kim, S., Choi, J., Yi, Y., & Kim, H. (2022). Analysis of influencing factors in purchasing electric vehicles using a structural equation model: Focused on Suwon City. Sustainability, 14(8), 4744. https://doi.org/10.3390/su14084744 Kumar, A., & Pant, S. (2023). Analytical hierarchy process for sustainable agriculture: An overview. MethodsX, 10, 101954. https://doi.org/10.1016/j.mex.2022.101954 LaMonaca, S., & Ryan, L. (2022). The state of play in electric vehicle charging services—A review of infrastructure provision, players, and policies. Renewable and Sustainable Energy Reviews, 154, 111733. https://doi.org/10.1016/j.rser.2021.111733 Lamperti, S., Cavallo, A., & Sassanelli, C. (2023). Digital servitization and business model innovation in SMEs: A model to escape from market disruption. IEEE Transactions on Engineering Management. https://doi.org/10.1109/TEM.2022.3233132 Lampón, J. F. (2022). Efficiency in design and production to achieve sustainable development challenges in the automobile industry: Modular electric vehicle platforms. Sustainable Development. https://doi.org/10.1002/sd.2370 Lanz, L., Noll, B., Schmidt, T. S., & Steffen, B. (2022). Comparing the levelized cost of electric vehicle charging options in Europe. Nature Communications, 13(1), 5277. https://doi.org/10.1038/s41467-022-32835-7 Leach, F., Kalghatgi, G., Stone, R., & Miles, P. (2020). The scope for improving the efficiency and environmental impact of internal combustion engines. Transportation Engineering, 1, 100005. https://doi.org/10.1016/j.treng.2020.100005 Leung, K. H., & Mo, D. Y. (2019). A fuzzy-AHP approach for strategic evaluation and selection of digital marketing tools. In 2019 IEEE international conference on industrial engineering and engineering management (IEEM) (pp. 1422–1426). https://doi.org/10.1109/IEEM44572.2019.8978797 Liu, W., Agusdinata, D. B., Eakin, H., & Romero, H. (2022). Sustainable minerals extraction for electric vehicles: A pilot study of consumers’ perceptions of impacts. Resources Policy, 75, 102523. https://doi.org/10.1016/j.resourpol.2021.102523 Mangla, S. K., Kumar, P., & Barua, M. K. (2015). Flexible decision modeling for evaluating the risks in green supply chain using fuzzy AHP and IRP methodologies. Global Journal of Flexible Systems Management, 16(1), 19–35. https://doi.org/10.1007/s40171-014-0081-x Menegaki, A. N., Olsen, S. B., & Tsagarakis, K. P. (2016). Towards a common standard—A reporting checklist for web-based stated preference valuation surveys and a critique for mode surveys. Journal of Choice Modelling, 18, 18–50. https://doi.org/10.1016/j.jocm.2016.04.005 Molla, A. H., Shams, H., Harun, Z., Kasim, A. N. C., Nallapaneni, M. K., & Rahman, M. N. A. (2023). Evaluation of end-of-life vehicle recycling system in India in responding to the sustainability paradigm: An explorative study. Scientific Reports, 13(1), 4169. https://doi.org/10.1038/s41598-023-30964-7 Naegele, H., & Zaklan, A. (2019). Does the EU ETS cause carbon leakage in European manufacturing? Journal of Environmental Economics and Management, 93, 125–147. https://doi.org/10.1016/j.jeem.2018.11.004 Niamir, L., Ivanova, O., Filatova, T., Voinov, A., & Bressers, H. (2020). Demand-side solutions for climate mitigation: Bottom-up drivers of household energy behavior change in the Netherlands and Spain. Energy Research & Social Science, 62, 101356. https://doi.org/10.1016/j.erss.2019.101356 Onat, N. C., Abdella, G. M., Kucukvar, M., Kutty, A. A., Al-Nuaimi, M., Kumbaroğlu, G., & Bulu, M. (2021). How eco-efficient are electric vehicles across Europe? A regionalized life cycle assessment-based eco-efficiency analysis. Sustainable Development, 29(5), 941–956. https://doi.org/10.1002/sd.2186 Rajan, R., Dhir, S., & Sushil. (2023). Determinants of alliance productivity and performance: Evidence from the automobile industry. International Journal of Productivity and Performance Management, 72(2), 281–305. https://doi.org/10.1108/IJPPM-02-2020-0079 Razmjoo, A., Ghazanfari, A., Jahangiri, M., Franklin, E., Denai, M., Marzband, M., et al. (2022). A comprehensive study on the expansion of electric vehicles in Europe. Applied Sciences, 12(22), 11656. https://doi.org/10.3390/app122211656 Rosa, P., & Terzi, S. (2016). Comparison of current practices for a combined management of printed circuit boards from different waste streams. Journal of Cleaner Production, 137, 300–312. https://doi.org/10.1016/j.jclepro.2016.07.089 Rosa, P., & Terzi, S. (2018). Improving end of life vehicle’s management practices: An economic assessment through system dynamics. Journal of Cleaner Production, 184, 520–536. https://doi.org/10.1016/j.jclepro.2018.02.264 Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98. https://doi.org/10.1504/IJSSCI.2008.017590 Sassanelli, C., & Terzi, S. (2022). The D-BEST reference model: A flexible and sustainable support for the digital transformation of small and medium enterprises. Global Journal of Flexible Systems Management (in press). https://doi.org/10.1007/s40171-022-00307-y Sathish Kumar, R., Manoj Kumar, R., Saravanan, B., Pavithran, D., Siddharthan, B., Goud, U. R., & N. (2023). Development of an efficient process for recycling of lithium-ion batteries. AIP Conference Proceedings, 2492(1), 50038. https://doi.org/10.1063/5.0140810 Schulz-Mönninghoff, M., & Evans, S. (2023). Key tasks for ensuring economic viability of circular projects: Learnings from a real-world project on repurposing electric vehicle batteries. Sustainable Production and Consumption, 35, 559–575. https://doi.org/10.1016/j.spc.2022.11.025 Secinaro, S., Calandra, D., Lanzalonga, F., & Ferraris, A. (2022). Electric vehicles’ consumer behaviours: Mapping the field and providing a research agenda. Journal of Business Research, 150, 399–416. https://doi.org/10.1016/j.jbusres.2022.06.011 Settembre-Blundo, D., González-Sánchez, R., Medina-Salgado, S., & García-Muiña, F. E. (2021). Flexibility and resilience in corporate decision making: A new sustainability-based risk management system in uncertain times. Global Journal of Flexible Systems Management, 22, 107–132. https://doi.org/10.1007/s40171-021-00277-7 Shafique, M., & Luo, X. (2022). Environmental life cycle assessment of battery electric vehicles from the current and future energy mix perspective. Journal of Environmental Management, 303, 114050. https://doi.org/10.1016/j.jenvman.2021.114050 Shi, L., Wu, R., & Lin, B. (2023). Where will go for electric vehicles in China after the government subsidy incentives are abolished? A controversial consumer perspective. Energy, 262, 125423. https://doi.org/10.1016/j.energy.2022.125423 Shukla, S. K., & Sushil, & Sharma, M. K. (2019). Managerial paradox toward flexibility: Emergent views using thematic analysis of literature. Global Journal of Flexible Systems Management, 20(4), 349–370. https://doi.org/10.1007/s40171-019-00220-x Singh, S., Dhir, S., Evans, S., & Sushil. (2021). The Trajectory of two decades of global journal of flexible systems management and flexibility research: A bibliometric analysis. Global Journal of Flexible Systems Management, 22(4), 377–401. https://doi.org/10.1007/s40171-021-00286-6 Solke, N. S., Shah, P., Sekhar, R., & Singh, T. P. (2022). Machine learning-based predictive modeling and control of lean manufacturing in automotive parts manufacturing industry. Global Journal of Flexible Systems Management, 23(1), 89–112. https://doi.org/10.1007/s40171-021-00291-9 Sovacool, B. K., Axsen, J., & Sorrell, S. (2018). Promoting novelty, rigor, and style in energy social science: Towards codes of practice for appropriate methods and research design. Energy Research & Social Science, 45, 12–42. https://doi.org/10.1016/j.erss.2018.07.007 Srivastava, A., Kumar, R. R., Chakraborty, A., Mateen, A., & Narayanamurthy, G. (2022). Design and selection of government policies for electric vehicles adoption: A global perspective. Transportation Research Part E: Logistics and Transportation Review, 161, 102726. https://doi.org/10.1016/j.tre.2022.102726 Stevenson, M., & Spring, M. (2007). Flexibility from a supply chain perspective: Definition and review. International Journal of Operations & Production Management, 27(7), 685–713. https://doi.org/10.1108/01443570710756956 Subramoniam, R., Huisingh, D., Chinnam, R. B., & Subramoniam, S. (2013). Remanufacturing decision-making framework (RDMF): Research validation using the analytical hierarchical process. Journal of Cleaner Production, 40, 212–220. https://doi.org/10.1016/j.jclepro.2011.09.004 Sun, X., Liu, G., Hao, H., Liu, Z., & Zhao, F. (2022). Modeling potential impact of COVID-19 pandemic on global electric vehicle supply chain. iScience, 25(3), 103903. https://doi.org/10.1016/j.isci.2022.103903 Sushil, & Dinesh, K. K. (2022). Structured literature review with TISM leading to an argumentation based conceptual model. Global Journal of Flexible Systems Management, 23(3), 387–407. https://doi.org/10.1007/s40171-022-00309-w Sushil. (2015). Valuation of flexibility. Global Journal of Flexible Systems Management, 16(3), 219–220. https://doi.org/10.1007/s40171-015-0100-6 Sushil. (2018). How to check correctness of total interpretive structural models? Annals of Operations Research, 270(1), 473–487. https://doi.org/10.1007/s10479-016-2312-3 Taddei, E., Sassanelli, C., Rosa, P., & Terzi, S. (2022). Circular supply chains in the era of Industry 4.0: A systematic literature review. Computers & Industrial Engineering, 170, 108268. https://doi.org/10.1016/j.cie.2022.108268 Tsakalidis, A., van Balen, M., Gkoumas, K., & Pekar, F. (2020). Catalyzing sustainable transport innovation through policy support and monitoring: The case of TRIMIS and the European green deal. Sustainability, 12(8), 3171. https://doi.org/10.3390/su12083171 Tsyganok, V. V., Kadenko, S. V., & Andriichuk, O. V. (2012). Significance of expert competence consideration in group decision making using AHP. International Journal of Production Research, 50(17), 4785–4792. https://doi.org/10.1080/00207543.2012.657967 Verde, S. F. (2020). The impact of the EU emissions trading system on competitiveness and carbon leakage: The econometric evidence. Journal of Economic Surveys, 34(2), 320–343. https://doi.org/10.1111/joes.12356 Vilathgamuwa, M., Mishra, Y., Yigitcanlar, T., Bhaskar, A., & Wilson, C. (2022). Mobile-Energy-as-a-Service (MEaaS): Sustainable electromobility via integrated energy–transport–urban infrastructure. Sustainability, 14(5), 2796. https://doi.org/10.3390/su14052796 Wolf, S., Teitge, J., Mielke, J., Schütze, F., & Jaeger, C. (2021). The European green deal—more than climate neutrality. Intereconomics, 56(2), 99–107. https://doi.org/10.1007/s10272-021-0963-z Wu, J., Liao, H., & Wang, J.-W. (2020). Analysis of consumer attitudes towards autonomous, connected, and electric vehicles: A survey in China. Research in Transportation Economics, 80, 100828. https://doi.org/10.1016/j.retrec.2020.100828 Xia, X., & Li, P. (2022). A review of the life cycle assessment of electric vehicles: Considering the influence of batteries. Science of the Total Environment, 814, 152870. https://doi.org/10.1016/j.scitotenv.2021.152870 Xia, Z., Wu, D., & Zhang, L. (2022). Economic, functional, and social factors influencing electric vehicles’ adoption: An empirical study based on the diffusion of innovation theory. Sustainability, 14(10), 6283. https://doi.org/10.3390/su14106283 Xiong, S., Yuan, Y., Yao, J., Bai, B., & Ma, X. (2023). Exploring consumer preferences for electric vehicles based on the random coefficient logit model. Energy, 263, 125504. https://doi.org/10.1016/j.energy.2022.125504 Ye, C., He, W., & Chen, H. (2022). Electric vehicle routing models and solution algorithms in logistics distribution: A systematic review. Environmental Science and Pollution Research, 29(38), 57067–57090. https://doi.org/10.1007/s11356-022-21559-2 Yeğin, T., & Ikram, M. (2022). Analysis of consumers’ electric vehicle purchase intentions: An expansion of the theory of planned behavior. Sustainability, 14(19), 12091. https://doi.org/10.3390/su141912091 Yuik, C. J., Mat Saman, M. Z., Ngadiman, N. H. A., & Hamzah, H. S. (2022). Supply chain optimisation for recycling and remanufacturing sustainable management in end-of-life vehicles: A mini-review and classification. Waste Management & Research, 41(3), 554–565. https://doi.org/10.1177/0734242X221123486 Zahedi, R., Hasan Ghodusinejad, M., Aslani, A., & Hachem-Vermette, C. (2022). Modelling community-scale renewable energy and electric vehicle management for cold-climate regions using machine learning. Energy Strategy Reviews, 43, 100930. https://doi.org/10.1016/j.esr.2022.100930 Zahraee, S. M., Mamizadeh, F., & Vafaei, S. A. (2018). Greening assessment of suppliers in automotive supply chain: An empirical survey of the automotive industry in Iran. Global Journal of Flexible Systems Management, 19(3), 225–238. https://doi.org/10.1007/s40171-018-0189-5