The Riemannian Geometry of the Space of Positive-Definite Matrices and Its Application to the Regularization of Positive-Definite Matrix-Valued Data
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aja-Fernández, S., de Luis García, R., Tao, D., Li, X. (eds.): Tensors in Image Processing and Computer Vision, Advances in Pattern Recognition. Springer, Berlin (2009)
Andai, A.: Information geometry in quantum mechanics. PhD thesis, Department for Analysis, Budapest University of Technology and Economics (2003) in Hungarian
Anderson, D., Hoffman, D., Henke, C., Thomas, E.L.: Periodic area-minimizing surfaces in block copolymers. Nature 334, 598–601 (1988)
Andersson, S., Hyde, S.T., Larsson, K., Lidin, S.: Minimal surfaces and structures: From inorganic and metal crystals to cell membranes and biopolymers. Chem. Rev. 88, 221–242 (1988)
Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Fast and simple calculus on tensors in the Log-Euclidean framework. In: Duncan, J., Gerig, G. (eds.) Proc. 8th Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2005, Part I. Lecture Notes in Computer Science, vol. 3749, pp. 115–122. Springer, Palm (2005)
Basser, P.J., Matiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994)
Bhatia, R., Holbrook, J.: Riemannian geometry and matrix geometric means. Linear Algebra Appl. 413, 594–618 (2006)
Boothby, W.M.: An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, New York (1986)
Burbea, J.: Informative geometry of probability spaces. Expo. Math. 4, 347–378 (1986)
Castaño-Moraga, C.A., Lenglet, C., Deriche, R., Ruiz-Alzola, J.: A Riemannian approach to anisotropic filtering of tensor fields. Signal Process. 87, 263–276 (2007)
Catté, F., Lions, P.-L., Morel, J.-M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29, 182–193 (1992)
Chefd’Hotel, C., Tschumperlé, D., Deriche, R., Faugeras, O.: Constrained flows of matrix-valued functions: Application to diffusion tensor regularization. In: A.,Heyden, Sparr, M.N.G., Johansen, P. (eds.) Computer Vision, ECCV 2002. Lecture Notes in Computer Science, vol. 2350, pp. 251–265. Springer, Berlin (2002)
Christiansen, O., Lee, T.-M., Lie, J., Sinha, U., Chan, T.F.: Total variation regularization of matrix-valued images. Int. J. Biomed. Imaging 2007, 11 (2007)
Cohen, R., Hardt, R.M., Kinderlehrer, D., Lin, S.Y., Luskin, M.: Minimum energy configuration for liquid crystals: Computational results. In: Ericksen, J.L., Kinderlehrer, D. (eds.) Theory and Applications of Liquid Crystals. IMA Volumes in Mathematics and its Applications, vol. 5, pp. 99–121. Springer, New York (1987)
Deriche, R., Tschumperlé, D., Lenglet, C., Rousson, M.: Variational approaches to the estimation, regularization and segmentation of diffusion tensor images. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 517–530. Springer, Berlin (2006)
Dubrovin, B.A., Novikov, S.P., Fomenko, A.T.: Modern Geometry: Methods of Homology Theory. Springer, Berlin (1984)
Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1964)
Feddern, C., Weickert, J., Burgeth, B., Welk, M.: Curvature-driven PDE methods for matrix-valued images. Int. J. Comput. Vis. 69, 93–107 (2006)
Förstner, W., Moonen, B.: A metric for covariance matrices. Tech. Rep., Dept. of Geodesy and Geoinformatics, Stuttgart University (1999)
Gur, Y., Sochen, N.: Coordinates free diffusion over compact Lie-groups. In: Sgallari, F., Murli, A., Paragios, N. (eds.) Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 4485, pp. 580–591. Springer, Berlin (2007)
Hamarneh, G., Hradsky, J.: Bilateral filtering of diffusion tensor magnetic resonance images. IEEE Trans. Image Process. 16, 2463–2475 (2007)
Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York (1978)
Henderson, H.V., Searle, S.R.: Vec and vech operators for matrices, with some uses in Jacobians and multivariate statistics. Can. J. Stat. 7, 65–81 (1979)
Kimmel, R., Malladi, R., Sochen, N.: Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images. Int. J. Comput. Vis. 39, 111–129 (2000)
Laidlaw, D.H., Weickert, J. (eds.): Visualization and Processing of Tensor Fields: Advances and Perspectives. Mathematics and Visualization. Springer, Berlin (2009)
LeBihan, D., Mangin, J.-F., Poupon, C., Clark, C.A., Pappata, S., Molko, N., Chabriat, H.: Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging 13, 534–546 (2001)
Lenglet, C., Rousson, M., Deriche, R., Faugeras, O.: Statistics on the manifold of multivariate normal distributions: theory and application to diffusion tensor MRI processing. J. Math. Imaging Vis. 25, 423–444 (2006)
Magnus, J.R.: Linear Structures. Oxford University Press, London (1988)
Magnus, J.R., Neudecker, H.: The elimination matrix: some lemmas and applications. SIAM J. Algebr. Discrete Methods 1, 422–449 (1980)
Moakher, M.: A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26, 735–747 (2005)
Moakher, M.: A Riemannain framework for the averaging, smoothing and interpolation of constrained data. In: 3rd Conference on Inverse Problems Control and Shape Optimization, Nice, France, pp. 119–126 (2006)
Moakher, M., Batchelor, P.G.: The symmetric space of positive definite tensors: From geometry to applications and visualization. In: Weickert, J. , Hagen, H. (eds.) Visualization and Processing of Tensor Fields. Mathematics and Visualization, pp. 285–298. Springer, Berlin (2006)
Mori, S., Barker, P.B.: Diffusion magnetic resonance imaging: its principle and applications. Anat. Rec., Part B, New Anat. 257, 102–109 (1999)
Ohara, A., Suda, N., Amari, S.: Dualistic differential geometry of positive definite matrices and its applications to related problems. Linear Algebra Appl. 247, 31–53 (1996)
Pajevic, S., Aldroubi, A., Basser, P.J.: A continuous tensor field approximation of discrete DT-MRI data for extracting microstructural and architectural features of tissue. J. Magn. Reson. 154, 85–100 (2002)
Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Comput. Vis. 66, 41–66 (2006)
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)
Petz, D.: Information geometry and statistical inference. In: Proceedings of the 2nd International Symposium on Information Geometry and its Applications, Tokyo, Japan, pp. 162–169 (2005)
Petz, D.: Means of positive matrices: geometry and a conjecture. Ann. Math. Inform. 32, 129–139 (2005)
Siegel, C.L.: Symplectic Geometry. Academic Press, New York (1964)
Sochen, N.A., Kimmel, R., Malladi, R.: A general framework for low level vision. IEEE Trans. Image Process. 7, 310–318 (1998)
Sochen, N.A., Sagiv, C., Kimmel, R.: Stereographic combing a porcupine or studies on direction diffusion in image processing. SIAM J. Appl. Math. 64, 1477–1508 (2004)
Tang, B., Sapiro, G., Caselles, V.: Diffusion of general data on non-flat manifolds via harmonic maps theory: the direction diffusion case. Int. J. Comput. Vis. 36, 149–161 (2000)
Taylor, J.: The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces. Ann. Math. 103, 489–539 (1976)
Vinberg, E.B.: The theory of convex homogeneous cones. Trans. Mosc. Math. Soc. 12, 340–403 (1963)
Weickert, J., Brox, T.: Diffusion and regularization of vector- and matrix-valued images. In: Nashed, N.Z., Scherzer, O. (eds.) Inverse Problems, Image Analysis, and Medical Imaging. Contemporary Mathematics, vol. 313, pp. 251–268. AMS, Providence (2002)
Weickert, J., Hagen, H. (eds.): Visualization and Processing of Tensor Fields, Mathematics and Visualization. Springer, Berlin (2006)