The Relationship Between Environmental Statistics and Predictive Gaze Behaviour During a Manual Interception Task: Eye Movements as Active Inference
Computational Brain & Behavior - Trang 1-17 - 2023
Tóm tắt
Human observers are known to frequently act like Bayes-optimal decision-makers. Growing evidence indicates that the deployment of the visual system may similarly be driven by probabilistic mental models of the environment. We tested whether eye movements during a dynamic interception task were indeed optimised according to Bayesian inference principles. Forty-one participants intercepted oncoming balls in a virtual reality racquetball task across five counterbalanced conditions in which the relative probability of the ball’s onset location was manipulated. Analysis of pre-onset gaze positions indicated that eye position tracked the true distribution of onset location, suggesting that the gaze system spontaneously adhered to environmental statistics. Eye movements did not, however, seek to minimise the distance between the target and foveal vision according to an optimal probabilistic model of the world and instead often reflected a ‘best guess’ about onset location. Trial-to-trial changes in gaze position were, however, found to be better explained by Bayesian learning models (hierarchical Gaussian filter) than associative learning models. Additionally, parameters relating to the precision of beliefs and prediction errors extracted from the participant-wise models were related to both task-evoked pupil dilations and variability in gaze positions, providing further evidence that probabilistic context was reflected in spontaneous gaze dynamics.
Tài liệu tham khảo
Acock, A. C. (2014). A gentle introduction to stata (4th ed.). Stata Press.
Adams, R. A., Perrinet, L. U., & Friston, K. (2012). Smooth pursuit and visual occlusion: Active inference and oculomotor control in schizophrenia. PLOS ONE, 7(10), e47502. https://doi.org/10.1371/journal.pone.0047502
Adams, R. A., Aponte, E., Marshall, L., & Friston, K. J. (2015). Active inference and oculomotor pursuit: The dynamic causal modelling of eye movements. Journal of Neuroscience Methods, 242, 1–14. https://doi.org/10.1016/j.jneumeth.2015.01.003
Arthur, T., & Harris, D. J. (2021). Predictive eye movements are adjusted in a Bayes-optimal fashion in response to unexpectedly changing environmental probabilities. Cortex, 145, 212–225. https://doi.org/10.1016/j.cortex.2021.09.017
Arthur, T., Vine, S., Buckingham, G., Brosnan, M., Wilson, M., & Harris, D. (2023). Testing predictive coding theories of autism spectrum disorder using models of active inference. PLOS Computational Biology, 19(9), e1011473. https://doi.org/10.1371/journal.pcbi.1011473
Bakst, L., & McGuire, J. T. (2021). Eye movements reflect adaptive predictions and predictive precision. Journal of Experimental Psychology: General, 150(5), 915–929. https://doi.org/10.1037/xge0000977
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. http://arxiv.org/abs/1406.5823.
Beck, J. M., Ma, W. J., Kiani, R., Hanks, T., Churchland, A. K., Roitman, J., Shadlen, M. N., Latham, P. E., & Pouget, A. (2008). Probabilistic population codes for Bayesian decision making. Neuron, 60(6), 1142–1152. https://doi.org/10.1016/j.neuron.2008.09.021
Berniker, M., Voss, M., & Kording, K. (2010). Learning priors for Bayesian computations in the nervous system. PLOS ONE, 5(9), e12686. https://doi.org/10.1371/journal.pone.0012686
Cashaback, J. G. A., McGregor, H. R., Pun, H. C. H., Buckingham, G., & Gribble, P. L. (2017). Does the sensorimotor system minimize prediction error or select the most likely prediction during object lifting? Journal of Neurophysiology, 117(1), 260–274. https://doi.org/10.1152/jn.00609.2016
Cullen, M., Davey, B., Friston, K. J., & Moran, R. J. (2018). Active inference in OpenAI Gym: A Paradigm For Computational Investigations Into Psychiatric Illness. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(9), 809–818. https://doi.org/10.1016/j.bpsc.2018.06.010
Daunizeau, J., den Ouden, H. E. M., Pessiglione, M., Kiebel, S. J., Stephan, K. E., & Friston, K. J. (2010). Observing the observer (I): Meta-Bayesian models of learning and decision-making. PLOS ONE, 5(12), e15554. https://doi.org/10.1371/journal.pone.0015554
de Brouwer, A. J., Flanagan, J. R., & Spering, M. (2021). Functional use of eye movements for an acting system. Trends in Cognitive Sciences. https://doi.org/10.1016/j.tics.2020.12.006
Diaz, G., Cooper, J., & Hayhoe, M. (2013). Memory and prediction in natural gaze control. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1628), 20130064. https://doi.org/10.1098/rstb.2013.0064
Fajen, B. R. (2007). Affordance-based control of visually guided action. Ecological Psychology, 19(4), 383–410. https://doi.org/10.1080/10407410701557877
Filipowicz, A. L., Glaze, C. M., Kable, J. W., & Gold, J. I. (2020). Pupil diameter encodes the idiosyncratic, cognitive complexity of belief updating. eLife, 9, e57872. https://doi.org/10.7554/eLife.57872
Fooken, J., & Spering, M. (2020). Eye movements as a readout of sensorimotor decision processes. Journal of Neurophysiology, 123(4), 1439–1447. https://doi.org/10.1152/jn.00622.2019
Frässle, S., Aponte, E. A., Bollmann, S., Brodersen, K. H., Do, C. T., Harrison, O. K., Harrison, S. J., Heinzle, J., Iglesias, S., Kasper, L., Lomakina, E. I., Mathys, C., Müller-Schrader, M., Pereira, I., Petzschner, F. H., Raman, S., Schöbi, D., Toussaint, B., Weber, L. A., Yao, Y., & Stephan, K. E. (2021). TAPAS: An open-source software package for Translational Neuromodeling and Computational Psychiatry. Neuroscience, 12, 680811. https://doi.org/10.1101/2021.03.12.435091
Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. https://doi.org/10.1038/nrn2787
Friston, K., Kilner, J., & Harrison, L. (2006). A free energy principle for the brain. Journal of Physiology-Paris, 100(1), 70–87. https://doi.org/10.1016/j.jphysparis.2006.10.001
Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., O’Doherty, J., & Pezzulo, G. (2016). Active inference and learning. Neuroscience & Biobehavioral Reviews, 68, 862–879. https://doi.org/10.1016/j.neubiorev.2016.06.022
Friston, K., Adams, R., Perrinet, L., & Breakspear, M. (2012). Perceptions as hypotheses: Saccades as experiments. Frontiers in Psychology, 3, 151. https://doi.org/10.3389/fpsyg.2012.00151
Glaze, C. M., Kable, J. W., & Gold, J. I. (2015). Normative evidence accumulation in unpredictable environments. eLife, 4, e08825. https://doi.org/10.7554/eLife.08825
Green, P., & MacLeod, C. J. (2016). SIMR: An R package for power analysis of generalized linear mixed models by simulation. Methods in Ecology and Evolution, 7(4), 493–498. https://doi.org/10.1111/2041-210X.12504
Harris, D. J., Arthur, T., Vine, S. J., Liu, J., Abd Rahman, H. R., Han, F., & Wilson, M. R. (2022). Task-evoked pupillary responses track precision-weighted prediction errors and learning rate during interceptive visuomotor actions. Scientific Reports, 12(1), 1. https://doi.org/10.1038/s41598-022-26544-w
Harris, D. J., Vine, S. J., Wilson, M. R., & Arthur, T. (2022). The design and development of a virtual environment to measure eye movement indicators of prediction: Report on pilot testing. PsyArXiv. https://doi.org/10.31234/osf.io/83t9q
Hayden, B. Y., Heilbronner, S. R., Pearson, J. M., & Platt, M. L. (2011). Surprise signals in anterior cingulate cortex: Neuronal encoding of unsigned reward prediction errors driving adjustment in behavior. Journal of Neuroscience, 31(11), 4178–4187. https://doi.org/10.1523/JNEUROSCI.4652-10.2011
Hayhoe, M. M., McKinney, T., Chajka, K., & Pelz, J. B. (2012). Predictive eye movements in natural vision. Experimental Brain Research, 217(1), 125–136. https://doi.org/10.1007/s00221-011-2979-2
Henderson, J. M. (2017). Gaze control as prediction. Trends in Cognitive Sciences, 21(1), 15–23. https://doi.org/10.1016/j.tics.2016.11.003
Itti, L., & Baldi, P. (2009). Bayesian surprise attracts human attention. Vision Research, 49(10), 1295–1306. https://doi.org/10.1016/j.visres.2008.09.007
Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3), 3. https://doi.org/10.1038/35058500
Jiang, L. P., & Rao, R. P. N. (2022). Dynamic predictive coding: A new model of hierarchical sequence learning and prediction in the cortex. bioRxiv. https://doi.org/10.1101/2022.06.23.497415
Joshi, S., & Gold, J. I. (2020). Pupil size as a window on neural substrates of cognition. Trends in Cognitive Sciences, 24(6), 466–480. https://doi.org/10.1016/j.tics.2020.03.005
Joshi, S., Li, Y., Kalwani, R. M., & Gold, J. I. (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 89(1), 221–234. https://doi.org/10.1016/j.neuron.2015.11.028
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1), 35–45. https://doi.org/10.1115/1.3662552
Katsumata, H., & Russell, D. M. (2012). Prospective versus predictive control in timing of hitting a falling ball. Experimental Brain Research, 216(4), 499–514. https://doi.org/10.1007/s00221-011-2954-y
Kloosterman, N. A., Meindertsma, T., van Loon, A. M., Lamme, V. A. F., Bonneh, Y. S., & Donner, T. H. (2015). Pupil size tracks perceptual content and surprise. European Journal of Neuroscience, 41(8), 1068–1078. https://doi.org/10.1111/ejn.12859
Klostermann, A., Vater, C., Kredel, R., & Hossner, E.-J. (2020). Perception and action in sports. On the functionality of foveal and peripheral vision. Frontiers in Sports and Active Living, 1, 66. https://doi.org/10.3389/fspor.2019.00066
Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719. https://doi.org/10.1016/j.tins.2004.10.007
Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427(6971), 244–247. https://doi.org/10.1038/nature02169
Körding, K. P., & Wolpert, D. M. (2006). Bayesian decision theory in sensorimotor control. Trends in Cognitive Sciences, 10(7), 319–326. https://doi.org/10.1016/j.tics.2006.05.003
Land, M. F., & McLeod, P. (2000). From eye movements to actions: How batsmen hit the ball. Nature Neuroscience, 3(12), 12. https://doi.org/10.1038/81887
Lappi, O. (2016). Eye movements in the wild: Oculomotor control, gaze behavior & frames of reference. Neuroscience & Biobehavioral Reviews, 69, 49–68. https://doi.org/10.1016/j.neubiorev.2016.06.006
Lavin, C., San Martín, R., & Rosales Jubal, E. (2014). Pupil dilation signals uncertainty and surprise in a learning gambling task. Frontiers in Behavioral Neuroscience, 7, 218. https://doi.org/10.3389/fnbeh.2013.00218
Lawson, R. P., Bisby, J., Nord, C. L., Burgess, N., & Rees, G. (2021). The computational, pharmacological, and physiological determinants of sensory learning under uncertainty. Current Biology, 31(1), 163-172.e4. https://doi.org/10.1016/j.cub.2020.10.043
Lemercier, A., Guillot, G., Courcoux, P., Garrel, C., Baccino, T., & Schlich, P. (2014). Pupillometry of taste: Methodological guide – from acquisition to data processing-and toolbox for MATLAB. Quantitative Methods for Psychology, 10(2), 179–195.
Limanowski, J., & Friston, K. (2020). Active inference under visuo-proprioceptive conflict: Simulation and empirical results. Scientific Reports, 10(1), 1. https://doi.org/10.1038/s41598-020-61097-w
Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P., & Makowski, D. (2021). Performance: An R package for assessment, comparison and testing of statistical models. The Journal of Open Source Software, 6, 3139. https://doi.org/10.21105/joss.03139
Mann, D. L., Nakamoto, H., Logt, N., Sikkink, L., & Brenner, E. (2019). Predictive eye movements when hitting a bouncing ball. Journal of Vision, 19(14), 28–28. https://doi.org/10.1167/19.14.28
Mathôt, S., & Vilotijević, A. (2022). Methods in cognitive pupillometry: Design, preprocessing, and statistical analysis. bioRxiv. https://doi.org/10.1101/2022.02.23.481628
Mathys, C. D., Daunizeau, J., Friston, K., & Stephan, K. (2011). A Bayesian foundation for Individual learning under uncertainty. Frontiers in Human Neuroscience, 5, 39. https://doi.org/10.3389/fnhum.2011.00039
Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., & Stephan, K. E. (2014). Uncertainty in perception and the hierarchical Gaussian filter. Frontiers in Human Neuroscience, 8, 825.
Najemnik, J., & Geisler, W. S. (2005). Optimal eye movement strategies in visual search. Nature, 434(7031), 387–391. https://doi.org/10.1038/nature03390
Nassar, M. R., Wilson, R. C., Heasly, B., & Gold, J. I. (2010). An approximately Bayesian delta-rule model explains the dynamics of belief updating in a changing environment. Journal of Neuroscience, 30(37), 12366–12378. https://doi.org/10.1523/JNEUROSCI.0822-10.2010
Nassar, M. R., Rumsey, K. M., Wilson, R. C., Parikh, K., Heasly, B., & Gold, J. I. (2012). Rational regulation of learning dynamics by pupil-linked arousal systems. Nature Neuroscience, 15(7), 7. https://doi.org/10.1038/nn.3130
Niehorster, D. C., Li, L., & Lappe, M. (2017). The accuracy and precision of position and orientation tracking in the HTC vive virtual reality system for scientific research. I-Perception, 8(3), 2041669517708205. https://doi.org/10.1177/2041669517708205
Parr, T., Sajid, N., Da Costa, L., Mirza, M. B., & Friston, K. J. (2021). Generative models for active vision. Frontiers in Neurorobotics, 15, 651432. https://doi.org/10.3389/fnbot.2021.651432
Parr, T., & Friston, K. J. (2019). Generalised free energy and active inference. Biological Cybernetics, 113(5), 495–513. https://doi.org/10.1007/s00422-019-00805-w
Peper, L., Bootsma, R. J., Mestre, D. R., & Bakker, F. C. (1994). Catching balls: How to get the hand to the right place at the right time. Journal of Experimental Psychology: Human Perception and Performance, 20, 591–612. https://doi.org/10.1037/0096-1523.20.3.591
Piray, P., & Daw, N. D. (2020). A simple model for learning in volatile environments. PLOS Computational Biology, 16(7), e1007963. https://doi.org/10.1371/journal.pcbi.1007963
R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Relaño-Iborra, H., & Bækgaard, P. (2020). PUPILS pipeline: A flexible Matlab toolbox for eyetracking and pupillometry data processing. http://arxiv.org/abs/2011.05118
Rescorla, R. A., & Wagner, A. R. (1972). Classical Conditioning II: Current Research and Theory. In Black, A.H. & Prokasy, W.F. (eds.) Classical Conditioning II: Current Research and Theory (pp. 64–99). Appleton-Century Crofts, New York.
Rigoux, L., Stephan, K. E., Friston, K. J., & Daunizeau, J. (2014). Bayesian model selection for group studies—Revisited. NeuroImage, 84, 971–985. https://doi.org/10.1016/j.neuroimage.2013.08.065
Smith, R., Schwartenbeck, P., Stewart, J. L., Kuplicki, R., Ekhtiari, H., & Paulus, M. P. (2020). Imprecise action selection in substance use disorder: Evidence for active learning impairments when solving the explore-exploit dilemma. Drug and Alcohol Dependence, 215, 108208. https://doi.org/10.1016/j.drugalcdep.2020.108208
Smith, R., Friston, K. J., & Whyte, C. J. (2022). A step-by-step tutorial on active inference and its application to empirical data. Journal of Mathematical Psychology, 107, 102632. https://doi.org/10.1016/j.jmp.2021.102632
Subramanian, D., Pearson, J. M., & Sommer, M. A. (2023). Bayesian and discriminative models for active visual perception across saccades. eNeuro, 10(7). https://doi.org/10.1523/ENEURO.0403-22.2023
Sutton, R. S. (1992). Gain adaptation beats least squares? In Proceedings of the 7th Yale workshop on adaptive and learning systems (Vol. 161, p. 166).
Vater, C., & Mann, D. (2021). Sports athletes use predictive saccades! But why? Journal of Vision, 21(9), 2623. https://doi.org/10.1167/jov.21.9.2623
Vater, C., Kredel, R., & Hossner, E. J. (2017). Detecting target changes in multiple object tracking with peripheral vision: More pronounced eccentricity effects for changes in form than in motion. Journal of Experimental Psychology. Human Perception and Performance, 43(5), 903–913. https://doi.org/10.1037/xhp0000376
Vater, C., Williams, A. M., & Hossner, E.-J. (2020). What do we see out of the corner of our eye? The role of visual pivots and gaze anchors in sport. International Review of Sport and Exercise Psychology, 13(1), 81–103. https://doi.org/10.1080/1750984X.2019.1582082
Yu, A. J., & Dayan, P. (2005). Uncertainty, neuromodulation, and attention. Neuron, 46(4), 681–692. https://doi.org/10.1016/j.neuron.2005.04.026
Zhao, H., & Warren, W. H. (2015). On-line and model-based approaches to the visual control of action. Vision Research, 110, 190–202. https://doi.org/10.1016/j.visres.2014.10.008