The Relationship Between Environmental Statistics and Predictive Gaze Behaviour During a Manual Interception Task: Eye Movements as Active Inference

Computational Brain & Behavior - Trang 1-17 - 2023
David Harris1, Sam Vine1, Mark Wilson1, Tom Arthur1
1School of Public Health and Sport Sciences, Medical School, University of Exeter, St Luke’s Campus, Exeter, UK

Tóm tắt

Human observers are known to frequently act like Bayes-optimal decision-makers. Growing evidence indicates that the deployment of the visual system may similarly be driven by probabilistic mental models of the environment. We tested whether eye movements during a dynamic interception task were indeed optimised according to Bayesian inference principles. Forty-one participants intercepted oncoming balls in a virtual reality racquetball task across five counterbalanced conditions in which the relative probability of the ball’s onset location was manipulated. Analysis of pre-onset gaze positions indicated that eye position tracked the true distribution of onset location, suggesting that the gaze system spontaneously adhered to environmental statistics. Eye movements did not, however, seek to minimise the distance between the target and foveal vision according to an optimal probabilistic model of the world and instead often reflected a ‘best guess’ about onset location. Trial-to-trial changes in gaze position were, however, found to be better explained by Bayesian learning models (hierarchical Gaussian filter) than associative learning models. Additionally, parameters relating to the precision of beliefs and prediction errors extracted from the participant-wise models were related to both task-evoked pupil dilations and variability in gaze positions, providing further evidence that probabilistic context was reflected in spontaneous gaze dynamics.

Tài liệu tham khảo

Acock, A. C. (2014). A gentle introduction to stata (4th ed.). Stata Press. Adams, R. A., Perrinet, L. U., & Friston, K. (2012). Smooth pursuit and visual occlusion: Active inference and oculomotor control in schizophrenia. PLOS ONE, 7(10), e47502. https://doi.org/10.1371/journal.pone.0047502 Adams, R. A., Aponte, E., Marshall, L., & Friston, K. J. (2015). Active inference and oculomotor pursuit: The dynamic causal modelling of eye movements. Journal of Neuroscience Methods, 242, 1–14. https://doi.org/10.1016/j.jneumeth.2015.01.003 Arthur, T., & Harris, D. J. (2021). Predictive eye movements are adjusted in a Bayes-optimal fashion in response to unexpectedly changing environmental probabilities. Cortex, 145, 212–225. https://doi.org/10.1016/j.cortex.2021.09.017 Arthur, T., Vine, S., Buckingham, G., Brosnan, M., Wilson, M., & Harris, D. (2023). Testing predictive coding theories of autism spectrum disorder using models of active inference. PLOS Computational Biology, 19(9), e1011473. https://doi.org/10.1371/journal.pcbi.1011473 Bakst, L., & McGuire, J. T. (2021). Eye movements reflect adaptive predictions and predictive precision. Journal of Experimental Psychology: General, 150(5), 915–929. https://doi.org/10.1037/xge0000977 Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. http://arxiv.org/abs/1406.5823. Beck, J. M., Ma, W. J., Kiani, R., Hanks, T., Churchland, A. K., Roitman, J., Shadlen, M. N., Latham, P. E., & Pouget, A. (2008). Probabilistic population codes for Bayesian decision making. Neuron, 60(6), 1142–1152. https://doi.org/10.1016/j.neuron.2008.09.021 Berniker, M., Voss, M., & Kording, K. (2010). Learning priors for Bayesian computations in the nervous system. PLOS ONE, 5(9), e12686. https://doi.org/10.1371/journal.pone.0012686 Cashaback, J. G. A., McGregor, H. R., Pun, H. C. H., Buckingham, G., & Gribble, P. L. (2017). Does the sensorimotor system minimize prediction error or select the most likely prediction during object lifting? Journal of Neurophysiology, 117(1), 260–274. https://doi.org/10.1152/jn.00609.2016 Cullen, M., Davey, B., Friston, K. J., & Moran, R. J. (2018). Active inference in OpenAI Gym: A Paradigm For Computational Investigations Into Psychiatric Illness. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(9), 809–818. https://doi.org/10.1016/j.bpsc.2018.06.010 Daunizeau, J., den Ouden, H. E. M., Pessiglione, M., Kiebel, S. J., Stephan, K. E., & Friston, K. J. (2010). Observing the observer (I): Meta-Bayesian models of learning and decision-making. PLOS ONE, 5(12), e15554. https://doi.org/10.1371/journal.pone.0015554 de Brouwer, A. J., Flanagan, J. R., & Spering, M. (2021). Functional use of eye movements for an acting system. Trends in Cognitive Sciences. https://doi.org/10.1016/j.tics.2020.12.006 Diaz, G., Cooper, J., & Hayhoe, M. (2013). Memory and prediction in natural gaze control. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1628), 20130064. https://doi.org/10.1098/rstb.2013.0064 Fajen, B. R. (2007). Affordance-based control of visually guided action. Ecological Psychology, 19(4), 383–410. https://doi.org/10.1080/10407410701557877 Filipowicz, A. L., Glaze, C. M., Kable, J. W., & Gold, J. I. (2020). Pupil diameter encodes the idiosyncratic, cognitive complexity of belief updating. eLife, 9, e57872. https://doi.org/10.7554/eLife.57872 Fooken, J., & Spering, M. (2020). Eye movements as a readout of sensorimotor decision processes. Journal of Neurophysiology, 123(4), 1439–1447. https://doi.org/10.1152/jn.00622.2019 Frässle, S., Aponte, E. A., Bollmann, S., Brodersen, K. H., Do, C. T., Harrison, O. K., Harrison, S. J., Heinzle, J., Iglesias, S., Kasper, L., Lomakina, E. I., Mathys, C., Müller-Schrader, M., Pereira, I., Petzschner, F. H., Raman, S., Schöbi, D., Toussaint, B., Weber, L. A., Yao, Y., & Stephan, K. E. (2021). TAPAS: An open-source software package for Translational Neuromodeling and Computational Psychiatry. Neuroscience, 12, 680811. https://doi.org/10.1101/2021.03.12.435091 Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. https://doi.org/10.1038/nrn2787 Friston, K., Kilner, J., & Harrison, L. (2006). A free energy principle for the brain. Journal of Physiology-Paris, 100(1), 70–87. https://doi.org/10.1016/j.jphysparis.2006.10.001 Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., O’Doherty, J., & Pezzulo, G. (2016). Active inference and learning. Neuroscience & Biobehavioral Reviews, 68, 862–879. https://doi.org/10.1016/j.neubiorev.2016.06.022 Friston, K., Adams, R., Perrinet, L., & Breakspear, M. (2012). Perceptions as hypotheses: Saccades as experiments. Frontiers in Psychology, 3, 151. https://doi.org/10.3389/fpsyg.2012.00151 Glaze, C. M., Kable, J. W., & Gold, J. I. (2015). Normative evidence accumulation in unpredictable environments. eLife, 4, e08825. https://doi.org/10.7554/eLife.08825 Green, P., & MacLeod, C. J. (2016). SIMR: An R package for power analysis of generalized linear mixed models by simulation. Methods in Ecology and Evolution, 7(4), 493–498. https://doi.org/10.1111/2041-210X.12504 Harris, D. J., Arthur, T., Vine, S. J., Liu, J., Abd Rahman, H. R., Han, F., & Wilson, M. R. (2022). Task-evoked pupillary responses track precision-weighted prediction errors and learning rate during interceptive visuomotor actions. Scientific Reports, 12(1), 1. https://doi.org/10.1038/s41598-022-26544-w Harris, D. J., Vine, S. J., Wilson, M. R., & Arthur, T. (2022). The design and development of a virtual environment to measure eye movement indicators of prediction: Report on pilot testing. PsyArXiv. https://doi.org/10.31234/osf.io/83t9q Hayden, B. Y., Heilbronner, S. R., Pearson, J. M., & Platt, M. L. (2011). Surprise signals in anterior cingulate cortex: Neuronal encoding of unsigned reward prediction errors driving adjustment in behavior. Journal of Neuroscience, 31(11), 4178–4187. https://doi.org/10.1523/JNEUROSCI.4652-10.2011 Hayhoe, M. M., McKinney, T., Chajka, K., & Pelz, J. B. (2012). Predictive eye movements in natural vision. Experimental Brain Research, 217(1), 125–136. https://doi.org/10.1007/s00221-011-2979-2 Henderson, J. M. (2017). Gaze control as prediction. Trends in Cognitive Sciences, 21(1), 15–23. https://doi.org/10.1016/j.tics.2016.11.003 Itti, L., & Baldi, P. (2009). Bayesian surprise attracts human attention. Vision Research, 49(10), 1295–1306. https://doi.org/10.1016/j.visres.2008.09.007 Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3), 3. https://doi.org/10.1038/35058500 Jiang, L. P., & Rao, R. P. N. (2022). Dynamic predictive coding: A new model of hierarchical sequence learning and prediction in the cortex. bioRxiv. https://doi.org/10.1101/2022.06.23.497415 Joshi, S., & Gold, J. I. (2020). Pupil size as a window on neural substrates of cognition. Trends in Cognitive Sciences, 24(6), 466–480. https://doi.org/10.1016/j.tics.2020.03.005 Joshi, S., Li, Y., Kalwani, R. M., & Gold, J. I. (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 89(1), 221–234. https://doi.org/10.1016/j.neuron.2015.11.028 Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1), 35–45. https://doi.org/10.1115/1.3662552 Katsumata, H., & Russell, D. M. (2012). Prospective versus predictive control in timing of hitting a falling ball. Experimental Brain Research, 216(4), 499–514. https://doi.org/10.1007/s00221-011-2954-y Kloosterman, N. A., Meindertsma, T., van Loon, A. M., Lamme, V. A. F., Bonneh, Y. S., & Donner, T. H. (2015). Pupil size tracks perceptual content and surprise. European Journal of Neuroscience, 41(8), 1068–1078. https://doi.org/10.1111/ejn.12859 Klostermann, A., Vater, C., Kredel, R., & Hossner, E.-J. (2020). Perception and action in sports. On the functionality of foveal and peripheral vision. Frontiers in Sports and Active Living, 1, 66. https://doi.org/10.3389/fspor.2019.00066 Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719. https://doi.org/10.1016/j.tins.2004.10.007 Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427(6971), 244–247. https://doi.org/10.1038/nature02169 Körding, K. P., & Wolpert, D. M. (2006). Bayesian decision theory in sensorimotor control. Trends in Cognitive Sciences, 10(7), 319–326. https://doi.org/10.1016/j.tics.2006.05.003 Land, M. F., & McLeod, P. (2000). From eye movements to actions: How batsmen hit the ball. Nature Neuroscience, 3(12), 12. https://doi.org/10.1038/81887 Lappi, O. (2016). Eye movements in the wild: Oculomotor control, gaze behavior & frames of reference. Neuroscience & Biobehavioral Reviews, 69, 49–68. https://doi.org/10.1016/j.neubiorev.2016.06.006 Lavin, C., San Martín, R., & Rosales Jubal, E. (2014). Pupil dilation signals uncertainty and surprise in a learning gambling task. Frontiers in Behavioral Neuroscience, 7, 218. https://doi.org/10.3389/fnbeh.2013.00218 Lawson, R. P., Bisby, J., Nord, C. L., Burgess, N., & Rees, G. (2021). The computational, pharmacological, and physiological determinants of sensory learning under uncertainty. Current Biology, 31(1), 163-172.e4. https://doi.org/10.1016/j.cub.2020.10.043 Lemercier, A., Guillot, G., Courcoux, P., Garrel, C., Baccino, T., & Schlich, P. (2014). Pupillometry of taste: Methodological guide – from acquisition to data processing-and toolbox for MATLAB. Quantitative Methods for Psychology, 10(2), 179–195. Limanowski, J., & Friston, K. (2020). Active inference under visuo-proprioceptive conflict: Simulation and empirical results. Scientific Reports, 10(1), 1. https://doi.org/10.1038/s41598-020-61097-w Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P., & Makowski, D. (2021). Performance: An R package for assessment, comparison and testing of statistical models. The Journal of Open Source Software, 6, 3139. https://doi.org/10.21105/joss.03139 Mann, D. L., Nakamoto, H., Logt, N., Sikkink, L., & Brenner, E. (2019). Predictive eye movements when hitting a bouncing ball. Journal of Vision, 19(14), 28–28. https://doi.org/10.1167/19.14.28 Mathôt, S., & Vilotijević, A. (2022). Methods in cognitive pupillometry: Design, preprocessing, and statistical analysis. bioRxiv. https://doi.org/10.1101/2022.02.23.481628 Mathys, C. D., Daunizeau, J., Friston, K., & Stephan, K. (2011). A Bayesian foundation for Individual learning under uncertainty. Frontiers in Human Neuroscience, 5, 39. https://doi.org/10.3389/fnhum.2011.00039 Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., & Stephan, K. E. (2014). Uncertainty in perception and the hierarchical Gaussian filter. Frontiers in Human Neuroscience, 8, 825. Najemnik, J., & Geisler, W. S. (2005). Optimal eye movement strategies in visual search. Nature, 434(7031), 387–391. https://doi.org/10.1038/nature03390 Nassar, M. R., Wilson, R. C., Heasly, B., & Gold, J. I. (2010). An approximately Bayesian delta-rule model explains the dynamics of belief updating in a changing environment. Journal of Neuroscience, 30(37), 12366–12378. https://doi.org/10.1523/JNEUROSCI.0822-10.2010 Nassar, M. R., Rumsey, K. M., Wilson, R. C., Parikh, K., Heasly, B., & Gold, J. I. (2012). Rational regulation of learning dynamics by pupil-linked arousal systems. Nature Neuroscience, 15(7), 7. https://doi.org/10.1038/nn.3130 Niehorster, D. C., Li, L., & Lappe, M. (2017). The accuracy and precision of position and orientation tracking in the HTC vive virtual reality system for scientific research. I-Perception, 8(3), 2041669517708205. https://doi.org/10.1177/2041669517708205 Parr, T., Sajid, N., Da Costa, L., Mirza, M. B., & Friston, K. J. (2021). Generative models for active vision. Frontiers in Neurorobotics, 15, 651432. https://doi.org/10.3389/fnbot.2021.651432 Parr, T., & Friston, K. J. (2019). Generalised free energy and active inference. Biological Cybernetics, 113(5), 495–513. https://doi.org/10.1007/s00422-019-00805-w Peper, L., Bootsma, R. J., Mestre, D. R., & Bakker, F. C. (1994). Catching balls: How to get the hand to the right place at the right time. Journal of Experimental Psychology: Human Perception and Performance, 20, 591–612. https://doi.org/10.1037/0096-1523.20.3.591 Piray, P., & Daw, N. D. (2020). A simple model for learning in volatile environments. PLOS Computational Biology, 16(7), e1007963. https://doi.org/10.1371/journal.pcbi.1007963 R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ Relaño-Iborra, H., & Bækgaard, P. (2020). PUPILS pipeline: A flexible Matlab toolbox for eyetracking and pupillometry data processing. http://arxiv.org/abs/2011.05118 Rescorla, R. A., & Wagner, A. R. (1972). Classical Conditioning II: Current Research and Theory. In Black, A.H. & Prokasy, W.F. (eds.) Classical Conditioning II: Current Research and Theory (pp. 64–99). Appleton-Century Crofts, New York. Rigoux, L., Stephan, K. E., Friston, K. J., & Daunizeau, J. (2014). Bayesian model selection for group studies—Revisited. NeuroImage, 84, 971–985. https://doi.org/10.1016/j.neuroimage.2013.08.065 Smith, R., Schwartenbeck, P., Stewart, J. L., Kuplicki, R., Ekhtiari, H., & Paulus, M. P. (2020). Imprecise action selection in substance use disorder: Evidence for active learning impairments when solving the explore-exploit dilemma. Drug and Alcohol Dependence, 215, 108208. https://doi.org/10.1016/j.drugalcdep.2020.108208 Smith, R., Friston, K. J., & Whyte, C. J. (2022). A step-by-step tutorial on active inference and its application to empirical data. Journal of Mathematical Psychology, 107, 102632. https://doi.org/10.1016/j.jmp.2021.102632 Subramanian, D., Pearson, J. M., & Sommer, M. A. (2023). Bayesian and discriminative models for active visual perception across saccades. eNeuro, 10(7). https://doi.org/10.1523/ENEURO.0403-22.2023 Sutton, R. S. (1992). Gain adaptation beats least squares? In Proceedings of the 7th Yale workshop on adaptive and learning systems (Vol. 161, p. 166). Vater, C., & Mann, D. (2021). Sports athletes use predictive saccades! But why? Journal of Vision, 21(9), 2623. https://doi.org/10.1167/jov.21.9.2623 Vater, C., Kredel, R., & Hossner, E. J. (2017). Detecting target changes in multiple object tracking with peripheral vision: More pronounced eccentricity effects for changes in form than in motion. Journal of Experimental Psychology. Human Perception and Performance, 43(5), 903–913. https://doi.org/10.1037/xhp0000376 Vater, C., Williams, A. M., & Hossner, E.-J. (2020). What do we see out of the corner of our eye? The role of visual pivots and gaze anchors in sport. International Review of Sport and Exercise Psychology, 13(1), 81–103. https://doi.org/10.1080/1750984X.2019.1582082 Yu, A. J., & Dayan, P. (2005). Uncertainty, neuromodulation, and attention. Neuron, 46(4), 681–692. https://doi.org/10.1016/j.neuron.2005.04.026 Zhao, H., & Warren, W. H. (2015). On-line and model-based approaches to the visual control of action. Vision Research, 110, 190–202. https://doi.org/10.1016/j.visres.2014.10.008