The Redox State of Earth's Mantle

Annual Review of Earth and Planetary Sciences - Tập 36 Số 1 - Trang 389-420 - 2008
D. J. Frost1, Catherine McCammon1
1Bayerisches GeoInstitut, University of Bayreuth, Germany

Tóm tắt

Oxygen thermobarometry measurements on spinel peridotite rocks indicate that the oxygen fugacity at the top of the upper mantle falls within ±2 log units of the fayalite-magnetite-quartz (FMQ) oxygen buffer. Measurements on garnet peridotites from cratonic lithosphere reveal a general decrease in fo2 with depth, which appears to result principally from the effect of pressure on the controlling Fe3+/Fe2+ equilibria. Modeling of experimental data indicates that at approximately 8 GPa, mantle fo2 will be 5 log units below FMQ and at a level where Ni-Fe metal becomes stable. Fe-Ni alloy and an Fe2O3-garnet component will be formed as a result of the disproportionation of FeO, which is experimentally demonstrated through observations of high Fe3+/ΣFe ratios in minerals in equilibrium with metallic Fe. In the lower mantle, the favorable coupled substitution of Al and Fe3+ into (Fe,Mg)SiO3 perovskite results in very high perovskite Fe3+/ΣFe ratios in equilibrium with metallic Fe. As a result, the lower mantle should contain approximately 1 weight% metallic Fe formed through FeO disproportionation, if the bulk oxygen content is the same as the upper mantle. Loss of disproportionated metallic Fe from the lower mantle during core formation could explain the higher Fe3+/ΣFe ratio of the present-day upper mantle when compared to that expected during core formation. The influence of pressure on mantle fo2 has important implications for the speciation of C-O-H-S volatile phases in Earth today and during its early evolution.

Từ khóa


Tài liệu tham khảo

10.1016/0016-7037(92)90197-Q

10.1016/j.epsl.2007.03.006

10.1029/2004GC000744

10.1126/science.1081311

10.1126/science.1098840

10.1016/0012-821X(95)00047-G

10.1007/BF00311183

10.1016/0016-7037(94)90222-4

10.1016/0016-7037(92)90157-E

10.1016/j.gca.2004.07.026

10.1038/349321a0

10.1016/0016-7037(96)00056-7

10.1016/0012-821X(69)90119-8

10.2475/ajs.290.10.1093

10.1038/39860

10.1016/S0016-7037(98)00287-7

10.1016/S0012-821X(01)00582-9

10.1016/j.epsl.2006.04.038

10.1093/petrology/37.3.609

10.1016/0012-821X(94)90268-2

10.1007/BF01575622

10.2475/ajs.277.10.1296

10.1016/0012-821X(86)90195-0

10.1130/G22856A.1

10.1023/A:1011895600380

10.1126/science.275.5306.1621

10.1515/9781501508684-004

10.2138/am-2003-2-315

10.2138/rmg.2006.62.11

10.1016/S0012-821X(02)00558-7

10.1007/s002690100181

10.1038/nature02413

10.1016/j.epsl.2005.01.026

10.1007/BF00310717

10.1016/S0016-7037(02)00828-1

10.1146/annurev.earth.34.031405.125211

10.1515/9781501508950-009

10.1016/S0009-2541(97)00174-5

10.1515/9781501509674-012

10.1126/science.1111895

10.1007/BF00348950

10.1007/s00410-003-0518-2

10.1016/0377-0273(86)90048-X

10.2138/am-2004-11-1203

10.1038/322221a0

10.1016/S0031-9201(96)03237-2

10.1086/648219

10.1038/380237a0

10.1016/0012-821X(95)00112-P

10.1038/30466

10.1029/JB092iB08p08089

10.1029/2005GL023257

10.2138/am-2004-0701

10.1007/s004100050161

10.1007/BF00307328

10.1029/2002GL016394

10.1007/PL00007658

10.1016/S0012-821X(98)00267-2

10.1038/381686a0

10.1016/S0012-821X(01)00521-0

10.1016/j.epsl.2004.10.006

10.1007/s00410-004-0641-8

Litvin YA, 2002, Dokl. Earth Sci., 382, 40

10.1007/BF00310646

Luth RW, 1999, Mantle Petrology: Field Observations and High Pressure Experimentation, 6, 297

10.1007/978-3-642-86574-9_12

10.1007/s00410-004-0583-1

10.1007/s002690050117

10.1029/160GM14

10.1007/s004100100244

10.1007/s00269-003-0309-3

10.1016/0009-2541(94)00140-4

10.1007/BF00306483

10.1016/S0012-821X(01)00306-5

10.1126/science.1135422

10.1016/S0031-9201(99)00127-2

10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2

10.1126/science.1095932

10.1029/2004GL021956

10.1126/science.284.5421.1788

10.1029/2002JB002055

Nell J, 1991, Am. Miner., 76, 405

10.1029/2005GL023529

Nixon PH, 1973, Lesotho Kimberlites, 48

10.1016/0016-7037(91)90169-6

O'Neill HStC, 1993, Am. Miner., 78, 456

10.1029/GM074p0073

10.1093/petrology/28.6.1169

10.1007/s00410-003-0500-z

10.1016/0012-821X(96)00036-2

10.1038/369474a0

10.1007/s00410-005-0662-y

10.2138/am-1998-9-1003

10.2343/geochemj.11.111

10.1038/nature06183

10.1016/S0012-821X(02)01044-0

10.1029/JB094iB04p04105

10.1007/BF00374720

10.1016/0016-7037(81)90054-5

Sinmyo R, 2007, Partitioning of iron between perovskite/postperovskite and magnesiowüstite, and ferric iron in (Mg,Fe)SiO3 postperovskite

10.1029/2006GL025858

Sobolev NV, 1989, Geol. Geophys. Akad. Nauk. SSSR Sib, 12, 25

10.1007/s004100050403

10.1007/s004100000174

10.1029/2005GL022773

10.1038/332349a0

10.1016/j.pepi.2007.01.011

10.1103/PhysRevLett.96.198501

10.1038/386578a0

10.1126/science.1057594

10.1016/j.epsl.2004.03.014

10.1016/j.epsl.2006.05.017

10.1098/rsta.1981.0203

10.1515/9781501508684-014

10.1016/0012-821X(93)90105-I

10.1126/science.248.4953.337

10.1016/0016-7037(89)90062-8

10.1038/nature04763

10.1016/S0012-821X(03)00379-0

10.1016/S0009-2541(96)00082-4

10.1016/j.lithos.2005.12.014

10.1093/petrology/33.1.203

Woodland AB, 1999, Proc. Int. Kimberlite Conf., 7th, Cape Town, 904

10.1016/j.epsl.2006.07.023