The Rayleigh–Taylor instability for the Verigin problem with and without phase transition

Jan Prüss1, Gieri Simonett2, Mathias Wilke1
1Institut für Mathematik, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
2Department of Mathematics, Vanderbilt University, Nashville, USA

Tóm tắt

Isothermal compressible two-phase flows in a capillary are modeled with and without phase transition in the presence of gravity, employing Darcy’s law for the velocity field. It is shown that the resulting systems are thermodynamically consistent in the sense that the available energy is a strict Lyapunov functional. In both cases, the equilibria with flat interface are identified. It is shown that the problems are well-posed in an $$L_p$$ -setting and generate local semiflows in the proper state manifolds. The main result concerns the stability of equilibria with flat interface, i.e. the Rayleigh–Taylor instability.

Tài liệu tham khảo

Bizhanova, G.I., Solonnikov, V.A.: On problems with free boundaries for second-order parabolic equations. Algebra Anal. 12, 98–139 (2000) [Translation in St. Petersburg Math. J. 12, 949–981 (2000)] Ehrnström, M., Escher, J., Matioc, B.-V.: Steady-state fingering patterns for a periodic Muskat problem. Methods Appl. Anal. 20, 33–46 (2013) Escher, J., Matioc, A.-V., Matioc, B.-V.: A generalized Rayleigh–Taylor condition for the Muskat problem. Nonlinearity 25, 73–92 (2012) Escher, J., Matioc, B.-V.: On the parabolicity of the Muskat problem: well-posedness, fingering, and stability results. Z. Anal. Anwend. 30, 193–218 (2011) Escher, J., Matioc, B.-V., Walker, C.: The domain of parabolicity for the Muskat problem. Indiana Univ. Math. J. 67, 679–737 (2018) Frolova, E.V.: Estimates in \(L_p\) for the solution of a model problem corresponding to the Verigin problem. Zap. Nauchn. Sem. S-Petersburg. Otdel. Mat. Inst. Steklov 259, 280–295 (1999) [Translation in J. Math. Sci. (N. Y.)) 109, 2018–2029 (1999)] Frolova, E.V.: Solvability of the Verigin problem in Sobolev spaces. Zap. Nauchn. Sem. S-Petersburg. Otdel. Mat. Inst. Steklov 295, 180–203 (2003) [Translation in J. Math. Sci. (N. Y.) 127, 1923–1935 (2003)] Guo, Y., Tice, I.: Linear Rayleigh–Taylor instability for viscous, compressible fluids. SIAM J. Math. Anal. 42, 1688–1720 (2010) Jang, J., Tice, I., Wang, Y.: The compressible viscous surface-internal wave problem: nonlinear Rayleigh–Taylor instability. Arch. Ration. Mech. Anal. 221, 215–272 (2016) Matioc, B.-V.: Viscous displacement in porous media: the Muskat problem in 2D. Trans. Amer. Math. Soc. 370, 7511–7556 (2018) Meyries, M., Schnaubelt, R.: Interpolation, embeddings and traces of anisotropic fractional Sobolev spaces with temporal weights. J. Funct. Anal. 262, 1200–1229s (2012) Prüss, J., Simonett, G., Zacher, R.: On convergence of solutions to equilibria for quasilinear parabolic problems. J. Differ. Equ. 246, 3902–3931 (2009) Prüss, J., Simonett, G.: On the Rayleigh–Taylor instability for the two-phase Navier–Stokes equations. Indiana Univ. Math. J. 59, 1853–1871 (2010) Prüss, J., Simonett, G.: Moving interfaces and quasilinear parabolic evolution equations. In: Monographs in Mathematics, vol. 105, Birkhäuser, Basel (2016) Prüss, J., Simonett, G.: On the Muskat problem. Evol. Equ. Control Theory 5, 631–645 (2016) Prüss, J., Simonett, G.: On the Verigin problem with and without phase transition. Interfaces Free Bound. 20, 107–128 (2018) Prüss, J., Simonett, G., Zacher, R.: Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension. Arch. Ration. Mech. Anal. 207, 611–667 (2013) Radkevich, E.V.: The classical Verigin–Muskat problem, the regularization problem, and inner layers. Sovrem. Mat. Prilozh. 16, 113–155 (2004). Translation in J. Math. Sci. (N.Y.), 1000–1044 (2004) Tao, Y.: Classical solutions of Verigin problem with surface tension. Chin. Ann. Math. Ser. B 18, 393–404 (1997) Tao, Y., Yi, F.: Classical Verigin problem as a limit case of Verigin problem with surface tension at free boundary. Appl. Math. J. Chin. Univ. Ser. B 11, 307–322 (1996) Wang, Y., Tice, I.: The viscous surface-internal wave problem: nonlinear Rayleigh–Taylor instability. Commun. Partial Differ. Equ. 37, 1967–2028 (2012) Wilke, M.: Rayleigh–Taylor instability for the two-phase Navier–Stokes equations with surface tension in cylindrical domains. Habilitations–Schrift Universität Halle. Naturwissenschaftliche Fakultät II (2013). arXiv:1703.05214 Xu, L.F.: A Verigin problem with kinetic condition. Appl. Math. Mech. 18, 177–184 (1997) Zhou, Y.: Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720(722), 1–136 (2017) Zhou, Y.: Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723(725), 1–60 (2017)