The Rate Dependent Tensile Response of Polycarbonate and Poly-methylmethacrylate
Tóm tắt
Từ khóa
Tài liệu tham khảo
ASTM D638-14 (2014) Standard test method for tensile properties of plastics. ASTM International, West Conshohocken, PA. doi: 10.1520/D0638-14
Chen W, Lu F, Cheng M (2002) Tension and compression tests of two polymers under quasi-static and dynamic loading. Polym Testing 21:113–121. doi: 10.1016/S0142-9418(01)00055-1
Fu S, Wang Y, Wang Y (2009) Tension testing of polycarbonate at high strain rates. Polym Test 28:724–729. doi: 10.1016/j.polymertesting.2009.06.002
Sarva S, Boyce M (2007) Mechanics of polycarbonate during high rate tension. J Mech Mater Struct 2(10):1853–1880. doi: 10.2140/jomms.2007.2.1853
Rae P, Brown E (2005) The properties of poly(tetrafluoroethylene) (PTFE) in tension. Polymer 46:8128–8140. doi: 10.1016/j.polymer.2005.06.120
Dwivedi A, Bradley J, Casem D Mechanical response of polycarbonate with strength model fits. ARL-TR-5899 2012
Cao K, Ma X, Zhang B, Wang Y, Wang Y (2010) Tensile behavior of polycarbonate over a wide range of strain rates. Mater Sci Eng A 527:4056–4061. doi: 10.1016/j.msea.2010.03.088
Bauwens J (1972) Relation between the compression yield stress and the mechanical loss peak of bisphenol-A-polycarbonate in the β transition range. J Mater Sci 7:577–584. doi: 10.1007/BF00761956
Bergstrom J, Boyce M (1998) Constitutive modeling of the large strain time-dependent behavior of elastomers. J Mech Phys Solids 46(5):931–954. doi: 10.1016/S0022-5096(97)00075-6
Mulliken A, Boyce M (2006) Mechanics of the rate-dependent elastic-plastic deformation of glassy polymers from low to high strain rates. Int J Solids Struct 43:1331–1356. doi: 10.1016/j.ijsolstr.2005.04.016
Richeton J, Ahzi S, Vecchio K, Jiang F, Makradi A (2007) Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates. Int J Solids Struct 46:7938–7954. doi: 10.1016/j.ijsolstr.2007.05.018
Safari K, Zamani J, Ferreira F, Guedes R (2013) Constitutive modeling of polycarbonate during high strain rate deformation. Polym Eng Sci 53(4):752–761. doi: 10.1002/pen.23315
Kolsky H (1949) An Investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc B 62(11):676–700. doi: 10.1088/0370-1301/62/11/302
Wang L, Labibes K, Azari Z, Pluvinage G (1994) Generalization of split Hopkinson bar technique to use viscoelastic bars. Int J Impact Eng 15(5):669–686. doi: 10.1016/0734-743X(94)90166-I
Zhao H, Gary G, Klepaczko J (1997) On the use of a viscoelastic split Hopkinson pressure bar. Int J Impact Eng 19(4):319–330. doi: 10.1016/S0734-743X(96)00038-3
Bacon C, Brun A (2000) Methodology for a Hopkinson test with a non-uniform viscoelastic bar. Int J Impact Eng 24:219–230. doi: 10.1016/S0734-743X(99)00166-9
Follansbee P, Frantz C (1983) Wave propagation in the split Hopkinson pressure bar. J Eng Mater Technol 105(1):61–66. doi: 10.1115/1.3225620
Lundberg B, Henchoz A (1977) Analysis of elastic waves from two-point strain measurement. Exp Mech 17(6):213–218. doi: 10.1007/BF02324491
Frew D, Forrestal M, Chen W (2005) Pulse shaping techniques for testing elastic-plastic materials with a split Hopkinson pressure bar. Exp Mech 45(2):186–195. doi: 10.1177/0014485105052111
Vecchio K, Jiang F (2007) Improved pulse shaping to achieve constant strain rate and stress equilibrium in split Hopkinson pressure bar testing. Metall Mater Trans A 38(11):2655–2665. doi: 10.1007/s11661-007-9204-8
Song B, Syn C, Grupido C, Chen W, Lu W (2008) A long split Hopkinson pressure bar for intermediate rate characterization of soft materials. Exp Mech 48(6):809–815. doi: 10.1007/s11340-007-9095-z
Chen W, Zhang B, Forrestal M (1999) A split Hopkinson bar technique for low-impedance materials. Exp Mech 39(2):81–85. doi: 10.1007/BF02331109
Chen W, Lu F, Zhou B (1999) A quartz-crystal-embedded split Hopkinson pressure bar for soft materials. Exp Mech 40(1):1–6. doi: 10.1007/BF02327540
Johnson T, Sarva S, Socrate S (2010) Comparison of low impedance split Hopkinson pressure bar techniques in the characterization of polyurea. Exp Mech 50(7):931–940. doi: 10.1007/s11340-009-9305-y
Cheng M, Chen W, Weerasooriya T (2005) Mechanical properties of Kevlar KM2 single fiber. J Eng Mater Technol 127(2):197–203. doi: 10.1115/1.1857937
Lim J, Zheng J, Masters K, Chen W (2010) Mechanical behavior of A265 single fibers. J Mater Sci 45(3):652–661. doi: 10.1007/s10853-009-3979-5
Sanborn B, Weerasooriya T Effect of strain rates and pre-twist on tensile strength of Kevlar KM2 single fiber. ARL-TR-6403 2013
Crane NK Sierra/Solid Mechanics 4.22 User’s Guide. Sandia Report SAND2011-7597, Sandia National Laboratories, Albuquerque, NM, 2011
Moy P, Weerasooriya T, Hsieh A, Chen W (2003) Strain rate response of a polycarbonate under uniaxial compression. Proceedings of the society of experimental mechanics international conference and exposition on experimental and applied mechanics