The Rate Dependent Tensile Response of Polycarbonate and Poly-methylmethacrylate

Mark Foster1, Bryan Love2, Robert Kaste2, Paul Moy2
1TKC Global Inc., 13873 Park Center Road, Suite 400 North, Herndon, VA, 20171, USA
2Army Research Laboratory, 4600 Deer Creek Loop, Aberdeen Proving Ground, MD, 21005, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

ASTM D638-14 (2014) Standard test method for tensile properties of plastics. ASTM International, West Conshohocken, PA. doi: 10.1520/D0638-14

Chen W, Lu F, Cheng M (2002) Tension and compression tests of two polymers under quasi-static and dynamic loading. Polym Testing 21:113–121. doi: 10.1016/S0142-9418(01)00055-1

Fu S, Wang Y, Wang Y (2009) Tension testing of polycarbonate at high strain rates. Polym Test 28:724–729. doi: 10.1016/j.polymertesting.2009.06.002

Sarva S, Boyce M (2007) Mechanics of polycarbonate during high rate tension. J Mech Mater Struct 2(10):1853–1880. doi: 10.2140/jomms.2007.2.1853

Rae P, Brown E (2005) The properties of poly(tetrafluoroethylene) (PTFE) in tension. Polymer 46:8128–8140. doi: 10.1016/j.polymer.2005.06.120

Dwivedi A, Bradley J, Casem D Mechanical response of polycarbonate with strength model fits. ARL-TR-5899 2012

Cao K, Ma X, Zhang B, Wang Y, Wang Y (2010) Tensile behavior of polycarbonate over a wide range of strain rates. Mater Sci Eng A 527:4056–4061. doi: 10.1016/j.msea.2010.03.088

Bauwens J (1972) Relation between the compression yield stress and the mechanical loss peak of bisphenol-A-polycarbonate in the β transition range. J Mater Sci 7:577–584. doi: 10.1007/BF00761956

Bergstrom J, Boyce M (1998) Constitutive modeling of the large strain time-dependent behavior of elastomers. J Mech Phys Solids 46(5):931–954. doi: 10.1016/S0022-5096(97)00075-6

Mulliken A, Boyce M (2006) Mechanics of the rate-dependent elastic-plastic deformation of glassy polymers from low to high strain rates. Int J Solids Struct 43:1331–1356. doi: 10.1016/j.ijsolstr.2005.04.016

Richeton J, Ahzi S, Vecchio K, Jiang F, Makradi A (2007) Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates. Int J Solids Struct 46:7938–7954. doi: 10.1016/j.ijsolstr.2007.05.018

Safari K, Zamani J, Ferreira F, Guedes R (2013) Constitutive modeling of polycarbonate during high strain rate deformation. Polym Eng Sci 53(4):752–761. doi: 10.1002/pen.23315

Kolsky H (1949) An Investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc B 62(11):676–700. doi: 10.1088/0370-1301/62/11/302

Wang L, Labibes K, Azari Z, Pluvinage G (1994) Generalization of split Hopkinson bar technique to use viscoelastic bars. Int J Impact Eng 15(5):669–686. doi: 10.1016/0734-743X(94)90166-I

Zhao H, Gary G, Klepaczko J (1997) On the use of a viscoelastic split Hopkinson pressure bar. Int J Impact Eng 19(4):319–330. doi: 10.1016/S0734-743X(96)00038-3

Bacon C, Brun A (2000) Methodology for a Hopkinson test with a non-uniform viscoelastic bar. Int J Impact Eng 24:219–230. doi: 10.1016/S0734-743X(99)00166-9

Follansbee P, Frantz C (1983) Wave propagation in the split Hopkinson pressure bar. J Eng Mater Technol 105(1):61–66. doi: 10.1115/1.3225620

Lundberg B, Henchoz A (1977) Analysis of elastic waves from two-point strain measurement. Exp Mech 17(6):213–218. doi: 10.1007/BF02324491

Frew D, Forrestal M, Chen W (2005) Pulse shaping techniques for testing elastic-plastic materials with a split Hopkinson pressure bar. Exp Mech 45(2):186–195. doi: 10.1177/0014485105052111

Vecchio K, Jiang F (2007) Improved pulse shaping to achieve constant strain rate and stress equilibrium in split Hopkinson pressure bar testing. Metall Mater Trans A 38(11):2655–2665. doi: 10.1007/s11661-007-9204-8

Song B, Syn C, Grupido C, Chen W, Lu W (2008) A long split Hopkinson pressure bar for intermediate rate characterization of soft materials. Exp Mech 48(6):809–815. doi: 10.1007/s11340-007-9095-z

Chen W, Zhang B, Forrestal M (1999) A split Hopkinson bar technique for low-impedance materials. Exp Mech 39(2):81–85. doi: 10.1007/BF02331109

Chen W, Lu F, Zhou B (1999) A quartz-crystal-embedded split Hopkinson pressure bar for soft materials. Exp Mech 40(1):1–6. doi: 10.1007/BF02327540

Johnson T, Sarva S, Socrate S (2010) Comparison of low impedance split Hopkinson pressure bar techniques in the characterization of polyurea. Exp Mech 50(7):931–940. doi: 10.1007/s11340-009-9305-y

Cheng M, Chen W, Weerasooriya T (2005) Mechanical properties of Kevlar KM2 single fiber. J Eng Mater Technol 127(2):197–203. doi: 10.1115/1.1857937

Lim J, Zheng J, Masters K, Chen W (2010) Mechanical behavior of A265 single fibers. J Mater Sci 45(3):652–661. doi: 10.1007/s10853-009-3979-5

Sanborn B, Weerasooriya T Effect of strain rates and pre-twist on tensile strength of Kevlar KM2 single fiber. ARL-TR-6403 2013

Crane NK Sierra/Solid Mechanics 4.22 User’s Guide. Sandia Report SAND2011-7597, Sandia National Laboratories, Albuquerque, NM, 2011

Moy P, Weerasooriya T, Hsieh A, Chen W (2003) Strain rate response of a polycarbonate under uniaxial compression. Proceedings of the society of experimental mechanics international conference and exposition on experimental and applied mechanics

Bornert M, Bremand F, Doumalin P, Dupre J-C, Fazzini M, Grediac M, Hild F, Mistou S, Molimard J, Orteu J-J, Robert L, Surrel Y, Vacher P, Wattrisse B (2009) Assessment of digital image correlation measurement errors: methodology and results. Exp Mech 49:353–370. doi: 10.1007/s11340-008-9204-7