Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tối ưu hóa Bê tông Nén Lăn được Tích hợp Sợi Polypropylene Tái Chế và Canxi Carbonat Nghiền Dựa trên Phương pháp RSM cho Cốt liệu Lát đường
Springer Science and Business Media LLC - Trang 1-13 - 2023
Tóm tắt
Bài báo này nghiên cứu các tính chất cơ học và độ bền của bê tông nén lăn được gia cường bằng sợi polypropylene tái chế (RPPF) và tích hợp canxi carbonat nghiền (GCC), thường được sử dụng cho các lớp mặt đường. Đầu tiên, phương pháp bề mặt phản ứng (RSM) được sử dụng để đánh giá ảnh hưởng của các thành phần, chẳng hạn như sợi và canxi carbonat nghiền (GCC), cùng tỷ lệ nước trên chất kết dính đến cường độ nén và cường độ uốn. Hơn nữa, phân tích phương sai (ANOVA) cũng được thực hiện để đánh giá sự tương tác của từng thành phần và ảnh hưởng của chúng đến cường độ. Cuối cùng, các phương trình bậc hai đã được phát triển để xác định cường độ dựa trên kết quả phân tích RSM. Từ những phát hiện này, đã xác nhận rằng RSM có thể được sử dụng hiệu quả để tối ưu hóa quá trình sản xuất bê tông RCC gia cường bằng RPPF.
Từ khóa
Tài liệu tham khảo
HuseinBayqra, S., Mardani-Aghabaglou, A., & Ramyar, K. (2022). Physical and mechanical properties of high volume fly ash roller compacted concrete pavement (A laboratory and case study). Construction and Building Materials, 314, 125664. https://doi.org/10.1016/j.conbuildmat.2021.125664
Gao, L., Adesina, A., & Das, S. (2021). Properties of eco-friendly basalt fibre reinforced concrete designed by Taguchi method. Construction and Building Materials, 302, 124161. https://doi.org/10.1016/j.conbuildmat.2021.124161
Scorza, D., Luciano, R., Mousa, S., & Vantadori, S. (2021). Fracture behaviour of hybrid fibre-reinforced roller-compacted concrete used in pavements. Construction and Building Materials., 271, 121554. https://doi.org/10.1016/j.conbuildmat.2020.121554
Lahucik, J., & Roesler, J. (2015). Low fines content roller-compacted concrete, in: Airf. Highw. Pavements 2015 Innov. Cost-Effective Pavements a Sustain. Futur. - Proc. 2015 Int. Airf. Highw. Pavements Conf., https://doi.org/10.1061/9780784479216.040.
Sok, T., Kim, Y. K., Park, J. Y., & Lee, S. W. (2022). Evaluation of early-age strains and stresses in roller-compacted concrete pavement. Journal of Traffic and Transporation Engineering (English Edition)., 9, 93. https://doi.org/10.1016/j.jtte.2020.04.007
Adresi, M., & Lacidogna, G. (2021). Investigating the micro/macro-texture performance of roller-compacted concrete pavement under simulated traffic abrasion. Applied Science, 11, 5704. https://doi.org/10.3390/app11125704
Tavakoli, D., Fakharian, P., & de Brito, J. (2021). Mechanical properties of roller-compacted concrete pavement containing recycled brick aggregates and silica fume. Road Materials and Pavement Design. https://doi.org/10.1080/14680629.2021.1924236
Debbarma, S., & Ransinchung, G. D. (2021). Achieving sustainability in roller compacted concrete pavement mixes using reclaimed asphalt pavement aggregates—state of the art review. Journal of Cleaner Production, 287, 125078. https://doi.org/10.1016/j.jclepro.2020.125078
Yildizel, S. A., Timur, O., & Ozturk, A. U. (2018). Abrasion resistance and mechanical properties of waste-glass-fiber-reinforced roller-compacted concrete. Mechanics of Composite Materials, 54, 251. https://doi.org/10.1007/s11029-018-9736-6
Algin, Z., & Gerginci, S. (2020). Freeze-thaw resistance and water permeability properties of roller compacted concrete produced with macro synthetic fibre. Construction and Building Materials, 234, 117382. https://doi.org/10.1016/j.conbuildmat.2019.117382
Ahmadi, M., Shafabakhsh, G. A., & Hassani, A. (2021). Fracture and mechanical performance of two-lift concrete pavements made of roller compacted concrete and polypropylene fibers. Construction and Building Materials, 268, 121144. https://doi.org/10.1016/j.conbuildmat.2020.121144
LaHucik, J., Dahal, S., Roesler, J., & Amirkhanian, A. N. (2017). Mechanical properties of roller-compacted concrete with macro-fibers. Construction and Building Materials, 135, 440. https://doi.org/10.1016/j.conbuildmat.2016.12.212
Rao, S. K., Sravana, P., & Rao, T. C. (2016). Experimental studies in ultrasonic pulse velocity of roller compacted concrete pavement containing fly ash and M-sand studies in ultrasonic pulse velocity of roller compacted concrete pavement. International Journal of Pavement Research and Technology., 9, 289. https://doi.org/10.1016/j.ijprt.2016.08.003
Lee, S. K., Jeon, M. J., Cha, S. S., & Park, C. G. (2017). Mechanical and permeability characteristiCS of latex-modified fiber-reinforced roller-compacted rapid-hardening-cement concrete for pavement repair. Applied Science., 7, 694. https://doi.org/10.3390/app7070694
Karadelis, J. N., & Lin, Y. (2015). Flexural strengths and fibre efficiency of steel-fibre-reinforced, roller-compacted, polymer modified concrete. Construction and Building Materials, 93, 498. https://doi.org/10.1016/j.conbuildmat.2015.04.059
Rooholamini, H., Hassani, A., & Aliha, M. R. M. (2018). Fracture properties of hybrid fibre-reinforced roller-compacted concrete in mode I with consideration of possible kinked crack. Construction and Building Materials, 187, 248. https://doi.org/10.1016/j.conbuildmat.2018.07.177
Rooholamini, H., Hassani, A., & Aliha, M. R. M. (2018). Evaluating the effect of macro-synthetic fibre on the mechanical properties of roller-compacted concrete pavement using response surface methodology. Construction and Building Materials, 159, 517. https://doi.org/10.1016/j.conbuildmat.2017.11.002
Yazici, Ş, Mardani-Aghabaglou, A., Tuyan, M., & Üte, A. A. (2015). Mechanical properties and impact resistance of roller-compacted concrete containing polypropylene fibre. Magazine of Concrete Research, 67, 867. https://doi.org/10.1680/macr.14.00242
Han, C. G., Hwang, Y. S., Yang, S. H., & Gowripalan, N. (2005). Performance of spalling resistance of high performance concrete with polypropylene fiber contents and lateral confinement. Cement and Concrete Research., 35, 1747. https://doi.org/10.1016/j.cemconres.2004.11.013
Song, P. S., Hwang, S., & Sheu, B. C. (2005). Strength properties of nylon- and polypropylene-fiber-reinforced concretes. Cement and Concrete Research, 35, 1546. https://doi.org/10.1016/j.cemconres.2004.06.033
Khalid, F. S., Irwan, J. M., Ibrahim, M. H. W., Othman, N., & Shahidan, S. (2018). Performance of plastic wastes in fiber-reinforced concrete beams. Construction and Building Materials, 183, 451. https://doi.org/10.1016/j.conbuildmat.2018.06.122
Jirawattanasomkul, T., Likitlersuang, S., Wuttiwannasak, N., Varabuntoonvit, V., Yodsudjai, W., & Ueda, T. (2021). Fibre-reinforced polymer made from plastic straw for concrete confinement: An alternative method of managing plastic waste from the COVID-19 pandemic. Engineering Journal., 25, 1–14. https://doi.org/10.4186/ej.2021.25.3.1
Małek, M., Jackowski, M., Łasica, W., & Kadela, M. (2020). Characteristics of recycled polypropylene fibers as an addition to concrete fabrication based on portland cement. Materials (Basel)., 13, 1827. https://doi.org/10.3390/MA13081827
Hesami, S., Modarres, A., Soltaninejad, M., & Madani, H. (2016). Mechanical properties of roller compacted concrete pavement containing coal waste and limestone powder as partial replacements of cement. Construction and Building Materials, 111, 625. https://doi.org/10.1016/j.conbuildmat.2016.02.116
Vahidi, E. K., Malekabadi, M. M., Rezaei, A., Roshani, M. M., & Roshani, G. H. (2017). Modeling of mechanical properties of roller compacted concrete containing RHA using ANFIS. Computers and Concrete, 19, 435. https://doi.org/10.12989/cac.2017.19.4.435
Vahedifard, F., Nili, M., & Meehan, C. L. (2010). Assessing the effects of supplementary cementitious materials on the performance of low-cement roller compacted concrete pavement. Construction and Building Materials, 24, 2528. https://doi.org/10.1016/j.conbuildmat.2010.06.003
Marchand, J., Hornain, H., Diamond, S., Pigeon, M., & Guiraud, H. (1996). The microstructure of dry concrete products. Cement and Concrete Research, 26, 427. https://doi.org/10.1016/S0008-8846(96)85030-7
Omran, A., Harbec, D., Tagnit-Hamou, A., & Gagne, R. (2017). Production of roller-compacted concrete using glass powder: Field study. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2016.12.099
Modarres, A., Hesami, S., Soltaninejad, M., & Madani, H. (2018). Application of coal waste in sustainable roller compacted concrete pavement-environmental and technical assessment. International Journal of Pavement Engineering, 19, 748–761. https://doi.org/10.1080/10298436.2016.1205747
Qian, X., Wang, J., Wang, L., & Fang, Y. (2019). Enhancing the performance of metakaolin blended cement mortar through in-situ production of nano to sub-micro calcium carbonate particles. Construction and Building Materials, 196, 681. https://doi.org/10.1016/j.conbuildmat.2018.11.134
Yildizel, S. A., Calis, G., & Tayeh, B. A. (2020). Mechanical and durability properties of ground calcium carbonate-added roller-compacted concrete for pavement. Journal of Materials Research and Technology., 9, 13341. https://doi.org/10.1016/j.jmrt.2020.09.070
Gertsakis, J., & Lewis, H. (2003). Sustainability and the Waste Management Hierarchy, EcoRecycle Victoria.
Gu, L., & Ozbakkaloglu, T. (2016). Use of recycled plastics in concrete: A critical review. Waste Management. https://doi.org/10.1016/j.wasman.2016.03.005
Lü, Z. Z., Zhao, J., & Yue, Z. F. (2007). Advanced response surface method for mechanical reliability analysis. Applied Mathematics and Mechanics, 28, 19. https://doi.org/10.1007/s10483-007-0103-x
López-Buendía, A. M., Romero-Sánchez, M. D., Climent, V., & Guillem, C. (2013). Surface treated polypropylene (PP) fibres for reinforced concrete. Cement and Concrete Research., 54, 29. https://doi.org/10.1016/j.cemconres.2013.08.004
Martínez-Barrera, G., Ureña-Nuñez, F., Gencel, O., & Brostow, W. (2011). Mechanical properties of polypropylene-fiber reinforced concrete after gamma irradiation. Composites Part A Applied Science and Manufacturing., 42, 567. https://doi.org/10.1016/j.compositesa.2011.01.016
Fraternali, F., Ciancia, V., Chechile, R., Rizzano, G., Feo, L., & Incarnato, L. (2011). Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete. Composite Structures, 93, 2368. https://doi.org/10.1016/j.compstruct.2011.03.025
Nili, M., & Afroughsabet, V. (2010). The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Construction and Building Materials, 24, 927. https://doi.org/10.1016/j.conbuildmat.2009.11.025
Kim, S. B., Yi, N. H., Kim, H. Y., Kim, J. H. J., & Song, Y. C. (2010). Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cement and Concrete Composites, 32, 232. https://doi.org/10.1016/j.cemconcomp.2009.11.002
Calis, G., Yildizel, S. A., Erzin, S., & Tayeh, B. A. (2021). Evaluation and optimisation of foam concrete containing ground calcium carbonate and glass fibre (experimental and modelling study). Case Studies in Construction Materials., 15, e00625. https://doi.org/10.1016/j.CScm.2021.e00625
Maruti, S. V., Krishna, R., & Mounesh, M. (2020). Properties of geopolymer cement mortar and blocks with calcium carbonate. Materials Today Processing. https://doi.org/10.1016/j.matpr.2020.04.471
McDonald, L. J., Carballo-Meilan, M. A., Chacartegui, R., & Afzal, W. (2022). The physicochemical properties of Portland cement blended with calcium carbonate with different morphologies as a supplementary cementitious material. Journal of Cleaner Production, 338, 130309. https://doi.org/10.1016/j.jclepro.2021.130309
McDonald, L. J., Afzal, W., & Glasser, F. P. (2022). Evidence of scawtite and tilleyite formation at ambient conditions in hydrated Portland cement blended with freshly-precipitated nano-size calcium carbonate to reduce greenhouse gas emissions. Journal of Building Engineering, 48, 103906. https://doi.org/10.1016/j.jobe.2021.103906
ASTM D1557, ASTM, D1557-12, Standard Test Methods for Laboratory Compaction CharacteristiCS of Soil Using Modified Effort, ASTM International, West Conshohocken, PA, 2012, ASTM Stand. Guid. (2012).
ASTM, ASTM C1435/C1435M-20: Standard practice for molding roller-compacted concrete in cylinder molds using a vibrating hammer. (2020).
ASTM C1170/C1170M-14, ASTM C1170, Standard test method for determining consistency and density of roller-compacted concrete using a vibrating table 1, ASTM Int. 91. (2014).
ASTM-C642, ASTM C642-13 Standard test method for density, absorption, and voids in hardened concrete. Annu. B. ASTM Stand. (2013).
ACI 207.5R-11, Report on Rolller-Compacted Mass Concrete. (2011).
Benouadah, A., Beddar, M., & Meddah, A. (2017). Physical and mechanical behaviour of a roller compacted concrete reinforced with polypropylene fiber. Journal of Fundamental and Applied Science., 9, 623. https://doi.org/10.4314/jfas.v9i2.1
Mardani-Aghabaglou, A., Andiç-Çakir, Ö., & Ramyar, K. (2013). Freeze-thaw resistance and transport properties of high-volume fly ash roller compacted concrete designed by maximum density method. Cement and Concrete Composites, 37, 259. https://doi.org/10.1016/j.cemconcomp.2013.01.009
Yildizel, S. A., Tayeh, B. A., & Uzun, M. (2022). The evaluation of calcium carbonate added and basalt fiber reinforced roller compacted high performance concrete for pavement. Case Studies in Construction Materials, 17, e01293. https://doi.org/10.1016/j.CScm.2022.e01293
Karahan, O., & Atiş, C. D. (2011). The durability properties of polypropylene fiber reinforced fly ash concrete. Materilas and Design., 32, 1044. https://doi.org/10.1016/j.matdes.2010.07.011
Moon, H. Y., Jung, H. S., Choi, D. S., & Kim, S. S. (2002). Experimental study on using the ground calcium carbonate as a concrete admixture. Geosystem Engineering., 5, 74. https://doi.org/10.1080/12269328.2002.10541190
Lertwattanaruk, P., & Makul, N. (2021). Influence of ground calcium carbonate waste on the properties of green self-consolidating concrete prepared by low-quality bagasse ash and rice husk ash. Materials (Basel)., 14, 4232. https://doi.org/10.3390/ma14154232
Fu, S. Y., Lauke, B., Mäder, E., Yue, C. Y., & Hu, X. (2000). Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites. Composites. Part A, Applied Science and Manufacturing. https://doi.org/10.1016/S1359-835X(00)00068-3
Li, L. G., Zhao, Z. W., Zhu, J., Kwan, A. K. H., & Zeng, K. L. (2018). Combined effects of water film thickness and polypropylene fibre length on fresh properties of mortar. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2018.03.259
Li, Y., Liu, X., Yuan, J., & Wu, M. (2015). Toughness improvement of epoxy resin mortar by incorporation of ground calcium carbonate. Construction and Building Materials, 100, 122. https://doi.org/10.1016/j.conbuildmat.2015.09.054
Ochi, T., Okubo, S., & Fukui, K. (2007). Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cement and Concrete Composites., 29, 448. https://doi.org/10.1016/j.cemconcomp.2007.02.002
Suji, D., Natesan, S. C., & Murugesan, R. (2007). Experimental study on behaviors of polypropylene fibrous concrete beams. Journal of Zhejiang University-Science A, 8, 1101. https://doi.org/10.1631/jzus.2007.A1101
Meddah, M. S., & Bencheikh, M. (2009). Properties of concrete reinforced with different kinds of industrial waste fibre materials. Construction and Building Materials., 23, 3196. https://doi.org/10.1016/j.conbuildmat.2009.06.017
Guo, S., Zheng, D., Zhao, L., Lu, Q., & Liu, X. (2022). Mechanical test and constitutive model of recycled plastic fiber reinforced recycled concrete. Construction and Building Materials, 348, 128578. https://doi.org/10.1016/j.conbuildmat.2022.128578
Zhao, J., Dyer, T., Cetenyi, L., Jones, R., & Gadd, G. M. (2022). Fungal colonization and biomineralization for bioprotection of concrete. Journal of Cleaner Production., 330, 129793. https://doi.org/10.1016/j.jclepro.2021.129793
Arab, M. G., Alsodi, R., Almajed, A., Yasuhara, H., Zeiada, W., & Shahin, M. A. (2021). State-of-the-art review of enzyme-induced calcite precipitation (Eicp) for ground improvement: Applications and prospects. Geosciences., 11, 492. https://doi.org/10.3390/geosciences11120492