The $$Q_{1,2}$$ – $$Q_7$$ interference contributions to $$b \rightarrow s \gamma $$ at $${\mathcal O}(\alpha _{\mathrm s}^2)$$ for the physical value of $$m_c$$

The European Physical Journal C - Tập 83 - Trang 1-6 - 2023
M. Czaja1, M. Czakon2, T. Huber3, M. Misiak1, M. Niggetiedt4, A. Rehman5,6, K. Schönwald7, M. Steinhauser8
1Faculty of Physics, Institute of Theoretical Physics, University of Warsaw, Warsaw, Poland
2Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University, Aachen, Germany
3Theoretische Physik 1, Center for Particle Physics Siegen (CPPS), Universität Siegen, Siegen, Germany
4Max Planck Institute for Physics, Munich, Germany
5Department of Physics, University of Alberta, Edmonton, Canada
6National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
7Physik-Institut, Universität Zürich, Zurich, Switzerland
8Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Tóm tắt

The $$\bar{B}\rightarrow X_s\gamma $$ branching ratio is currently measured with around $$5\%$$ accuracy. Further improvement is expected from Belle II. To match such a precision on the theoretical side, evaluation of $${\mathcal O}(\alpha _{\mathrm s}^2)$$ corrections to the partonic decay $$b \rightarrow X_s^\textrm{part}\gamma $$ are necessary, which includes the $$b \rightarrow s \gamma $$ , $$b \rightarrow s g\gamma $$ , $$b \rightarrow s gg\gamma $$ , $$b \rightarrow sq\bar{q}\gamma $$ decay channels. Here, we evaluate the unrenormalized contribution to $$b \rightarrow s \gamma $$ that stems from the interference of the photonic dipole operator $$Q_7$$ and the current–current operators $$Q_1$$ and $$Q_2$$ . Our results, obtained in the cut propagator approach at the 4-loop level, agree with those found in parallel by Fael et al. who have applied the amplitude approach at the 3-loop level. Partial results for the same quantities recently determined by Greub et al. agree with our findings, too.

Tài liệu tham khảo

S. Chen et al., (CLEO Collaboration), Phys. Rev. Lett. 87, 251807 (2001). arXiv:hep-ex/0108032 T. Saito et al., (Belle Collaboration), Phys. Rev. D 91, 052004 (2015). arXiv:1411.7198 A. Limosani et al., (Belle Collaboration), Phys. Rev. Lett. 103, 241801 (2009). arXiv:0907.1384 B. Aubert et al., (BaBar Collaboration), Phys. Rev. D 77, 051103 (2008). arXiv:0711.4889 J.P. Lees et al., (BaBar Collaboration), Phys. Rev. D 86, 052012 (2012). arXiv:1207.2520 J.P. Lees et al., (BaBar Collaboration), Phys. Rev. Lett. 109, 191801 (2012). arXiv:1207.2690 F. Abudinén et al. (Belle-II Collaboration). arXiv:2210.10220 Y.S. Amhis et al., (Heavy Flavor Averaging Group (HFLAV)), Phys. Rev. D 107, 052008 (2023). arXiv:2206.07501 R.L. Workman et al. (Particle Data Group), PTEP 2022, 083C01 (2022) F.U. Bernlochner et al., SIMBA Collaboration. Phys. Rev. Lett. 127, 102001 (2021). arXiv:2007.04320 B. Dehnadi, I. Novikov, F.J. Tackmann, JHEP 2307, 214 (2023). arXiv:2211.07663 M. Benzke, S.J. Lee, M. Neubert, G. Paz, JHEP 1008, 099 (2010). arXiv:1003.5012 A. Gunawardana, G. Paz, JHEP 1911, 141 (2019). arXiv:1908.02812 M. Benzke, T. Hurth, Phys. Rev. D 102, 114024 (2020). arXiv:2006.00624 M. Benzke, T. Hurth, arXiv:2303.06447 T. Hurth, R. Szafron, Nucl. Phys. B 991, 116200 (2023). arXiv:2301.01739 M. Czakon, P. Fiedler, T. Huber, M. Misiak, T. Schutzmeier, M. Steinhauser, JHEP 1504, 168 (2015). arXiv:1503.01791 M. Misiak, M. Steinhauser, Nucl. Phys. B 840, 271 (2010). arXiv:1005.1173 M. Misiak, H. Asatrian, R. Boughezal, M. Czakon, T. Ewerth, A. Ferroglia, P. Fiedler, P. Gambino, C. Greub, U. Haisch, T. Huber, M. Kamiński, G. Ossola, M. Poradziński, A. Rehman, T. Schutzmeier, M. Steinhauser, J. Virto, Phys. Rev. Lett. 114, 221801 (2015). arXiv:1503.01789 M. Misiak, A. Rehman, M. Steinhauser, JHEP 2006, 175 (2020). arXiv:2002.01548 E. Kou et al. (Belle-II Collaboration), PTEP 2019, 123C01 (2019). arXiv:1808.10567 M. Fael, F. Lange, K. Schönwald, M. Steinhauser, JHEP 2311, 166 (2023). arXiv:2309.14706 C. Greub, H.M. Asatrian, F. Saturnino, C. Wiegand, JHEP 2305, 201 (2023). arXiv:2303.01714 M. Kamiński, M. Misiak, M. Poradziński, Phys. Rev. D 86, 094004 (2012). arXiv:1209.0965 H.M. Asatrian, C. Greub, Phys. Rev. D 88, 074014 (2013). arXiv:1305.6464 C. Anastasiou, K. Melnikov, Nucl. Phys. B 646, 220 (2002). arXiv:hep-ph/0207004 P. Nogueira, J. Comput. Phys. 105, 279 (1993) J. Kublbeck, M. Bohm, A. Denner, Comput. Phys. Commun. 60, 165 (1990) T. Hahn, Comput. Phys. Commun. 140, 418 (2001). arXiv:hep-ph/0012260 M. Misiak, A. Rehman, M. Steinhauser, Phys. Lett. B 770, 431 (2017). arXiv:1702.07674 B. Ruijl, T. Ueda, J. Vermaseren, arXiv:1707.06453 P. Maierhöfer, J. Usovitsch, P. Uwer, Comput. Phys. Commun. 230, 99 (2018). arXiv:1705.05610 J. Klappert, F. Lange, P. Maierhöfer, J. Usovitsch, Comput. Phys. Commun. 266, 108024 (2021). arXiv:2008.06494 X. Liu, Y.Q. Ma, Comput. Phys. Commun. 283, 108565 (2023). arXiv:2201.11669 C. Greub, T. Hurth, D. Wyler, Phys. Lett. B 380, 385 (1996). arXiv:hep-ph/9602281 H.M. Asatrian, A. Hovhannisyan, V. Poghosyan, T. Ewerth, C. Greub, T. Hurth, Nucl. Phys. B 749, 325 (2006). arXiv:hep-ph/0605009