The Proline-rich Antibacterial Peptide Bac7 Binds to and Inhibits in vitro the Molecular Chaperone DnaK

Springer Science and Business Media LLC - Tập 15 Số 2 - Trang 147-155 - 2009
Marco Scocchi1, Christine Lüthy2, Pietro Decarli1, Giuseppina Mignogna3, Philipp Christen2, Renato Gennaro1
1Dipartmento di Scienze della Vita, Università di Trieste, Trieste, Italy
2Biochemisches Institut, Universität Zürich, Zurich, Switzerland
3Dipartimento di Scienze Biochimiche, Università La Sapienza, Rome, Italy.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agerberth B, Lee JY, Bergman T et al (1991) Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur J Biochem 202:849–854

Benincasa M, Scocchi M, Podda E et al (2004) Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates. Peptides 25:2055–2061

Bischofberger P, Han W, Feifel B, Schonfeld HJ, Christen P (2003) D-Peptides as inhibitors of the DnaK/DnaJ/GrpE chaperone system. J Biol Chem 278:19044–19047

Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

Bulaj G, Kortemme T, Goldenberg DP (1998) Ionization-reactivity relationships for cysteine thiols in polypeptides. Biochemistry 37:8965–8972

Casteels P, Ampe C, Jacobs F, Vaeck M, Tempst P (1989) Apidaecins: antibacterial peptides from honeybees. EMBO J 8:2387–2391

Chan YR, Gallo RL (1998) PR-39, a syndecan-inducing antimicrobial peptide, binds and affects p130(Cas). J Biol Chem 273:28978–28985

Chesnokova LS, Slepenkov SV, Witt SN (2004) The insect antimicrobial peptide, l-pyrrhocoricin, binds to and stimulates the ATPase activity of both wild-type and lidless DnaK. FEBS Lett 565:65–69

Cho JH, Park CB, Yoon YG, Kim SC (1998) Lumbricin I, a novel proline-rich antimicrobial peptide from the earthworm: purification, cDNA cloning and molecular characterization. Biochim Biophys Acta 1408:67–76

Cudic M, Otvos L Jr (2002) Intracellular targets of antibacterial peptides. Curr Drug Targets 3:101–106

Destoumieux D, Bulet P, Loew D et al (1997) Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem 272:28398–28406

Feifel B, Sandmeier E, Schonfeld HJ, Christen P (1996) Potassium ions and the molecular-chaperone activity of DnaK. Eur J Biochem 237:318–321

Feifel B, Schonfeld HJ, Christen P (1998) D-peptide ligands for the co-chaperone DnaJ. J Biol Chem 273:11999–12002

Frank RW, Gennaro R, Schneider K, Przybylski M, Romeo D (1990) Amino acid sequences of two proline-rich bactenecins. Antimicrobial peptides of bovine neutrophils. J Biol Chem 265:18871–18874

Gaczynska M, Osmulski PA, Gao Y, Post MJ, Simons M (2003) Proline- and arginine-rich peptides constitute a novel class of allosteric inhibitors of proteasome activity. Biochemistry 42:8663–8670

Gallo RL, Ono M, Povsic T et al (1994) Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc Natl Acad Sci USA 91:11035–11039

Gennaro R, Skerlavaj B, Romeo D (1989) Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect Immun 57:3142–3146

Gennaro R, Scocchi M, Merluzzi L, Zanetti M (1998) Biological characterization of a novel mammalian antimicrobial peptide. Biochim Biophys Acta 1425:361–368

Gennaro R, Zanetti M, Benincasa M, Podda E, Miani M (2002) Pro-rich antimicrobial peptides from animals: structure, biological functions and mechanism of action. Curr Pharm Des 8:763–778

Hale JD, Hancock RE (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther 5:951–959

Han W, Christen P (2003) Mechanism of the targeting action of DnaJ in the DnaK molecular chaperone system. J Biol Chem 278:19038–19043

Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

Hartl FU, Martin J, Neupert W (1992) Protein folding in the cell: the role of molecular chaperones Hsp70 and Hsp60. Annu Rev Biophys Biomol Struct 21:293–322

Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

Kay BK, Williamson MP, Sudol M (2000) The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J 14:231–241

Kragol G, Lovas S, Varadi G et al (2001) The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40:3016–3026

Kragol G, Hoffmann R, Chattergoon MA et al (2002) Identification of crucial residues for the antibacterial activity of the proline-rich peptide, pyrrhocoricin. Eur J Biochem 269:4226–4237

Laufen T, Mayer MP, Beisel C et al (1999) Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. Proc Natl Acad Sci USA 96:5452–5457

Liebscher M, Roujeinikova A (2009) Allosteric coupling between the lid and interdomain linker in DnaK revealed by inhibitor binding studies. J Bacteriol 191:1456–1462

Liebscher M, Jahreis G, Lucke C et al (2007) Fatty acyl benzamido antibacterials based on inhibition of DnaK-catalyzed protein folding. J Biol Chem 282:4437–4446

Liu X (2002) Concentrations of the GroEL/GroES and the DnaK/DnaJ/GrpE molecular chaperones in Escherichia coli under normal and heat shock conditions. M.D. thesis. Universität Zürich, Zürich, Switzerland

Mattiuzzo M, Bandiera A, Gennaro R et al (2007) Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol Microbiol 66:151–163

Mogk A, Tomoyasu T, Goloubinoff P et al (1999) Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18:6934–6949

Osborn MJ, Munson R (1974) Separation of the inner (cytoplasmic) and outer membranes of gram-negative bacteria. Methods Enzymol 31:642–653

Otvos L Jr (2002) The short proline-rich antibacterial peptide family. Cell Mol Life Sci 59:1138–1150

Otvos L Jr, Rogers ME, Consolvo PJ et al (2000) Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 39:14150–14159

Pierpaoli EV, Gisler SM, Christen P (1998) Sequence-specific rates of interaction of target peptides with the molecular chaperones DnaK and DnaJ. Biochemistry 37:16741–16748

Podda E, Benincasa M, Pacor S et al (2006) Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochim Biophys Acta 1760:1732–1740

Reddy KV, Yedery RD, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24:536–547

Rudiger S, Germeroth L, Schneider-Mergener J, Bukau B (1997) Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J 16:1501–1507

Rudiger S, Schneider-Mergener J, Bukau B (2001) Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. EMBO J 20:1042–1050

Schmid D, Baici A, Gehring H, Christen P (1994) Kinetics of molecular chaperone action. Science 263:971–973

Schonfeld HJ, Schmidt D, Schroder H, Bukau B (1995a) The DnaK chaperone system of Escherichia coli: quaternary structures and interactions of the DnaK and GrpE components. J Biol Chem 270:2183–2189

Schonfeld HJ, Schmidt D, Zulauf M (1995b) Investigation of the molecular chaperone DnaJ by analytical ultracentrifugation. Prog Colloid Polym Sci 99:7–10

Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248

Shamova O, Brogden KA, Zhao C et al (1999) Purification and properties of proline-rich antimicrobial peptides from sheep and goat leukocytes. Infect Immun 67:4106–4111

Shi J, Ross CR, Leto TL, Blecha F (1996) PR-39, a proline-rich antibacterial peptide that inhibits phagocyte NADPH oxidase activity by binding to Src homology 3 domains of p47 phox. Proc Natl Acad Sci USA 93:6014–6018

Stensvag K, Haug T, Sperstad SV et al (2008) Arasin 1, a proline-arginine-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. Dev Comp Immunol 32:275–285

Tomasinsig L, Zanetti M (2005) The cathelicidins: structure, function and evolution. Curr Protein Pept Sci 6:23–34

Tomoyasu T, Mogk A, Langen H, Goloubinoff P, Bukau B (2001) Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol Microbiol 40:397–413

Zhang L, Falla TJ (2006) Antimicrobial peptides: therapeutic potential. Expert Opin Pharmacother 7:653–663

Zhu X, Zhao X, Burkholder WF et al (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272:1606–1614