The Primary Steps of Photosynthesis

Physics Today - Tập 47 Số 2 - Trang 48-55 - 1994
Graham R. Fleming1, Rienk van Grondelle2
1University of Chicago
2Free University of Amsterdam, Netherlands

Tóm tắt

Photosynthesis, the process by which plants convert solar energy into chemical energy, results in about 10 billion tons of carbon entering the biosphere annually as carbohydrate—equivalent to about eight times mankind's energy consumption in 1990. The apparatus used by plants to perform this conversion is both complex and highly efficient. Two initial steps of photosynthesis—energy transfer and electron transfer—are essential to its efficiency: Molecules of the light-harvesting system transfer electronic excitation energy to special chlorophyll molecules, whose role is to initiate the directional transfer of electrons across a biological membrane; the electron transfer, which takes place in a pigment-protein complex called the reaction center, then creates a potential difference that drives the subsequent biochemical reactions that store the energy. (Higher plants use two different reaction centers, called photosystems I and II, while purple bacteria make do with a single reaction center. The difference is that the bacteria do not generate oxygen in the photosynthetic process.) Both the elementary energy transfer and the primary electron transfer are ultrafast (occurring between 10−13 and 10−12 seconds), leading to the trapping of excitation energy at the reaction center (on a 100-picosecond timescale) and subsequent electron transfer in about 3 picoseconds with almost 100% quantum yield.

Từ khóa


Tài liệu tham khảo

1989, EMBO Journal, 8, 2149, 10.1002/j.1460-2075.1989.tb08338.x

1989, Photosynth. Res., 72, 47

1991, J. Phys. Chem., 95, 10142, 10.1021/j100177a093

1993, J. Phys. Chem., 97, 6934, 10.1021/j100128a031

1991, Proc. Natl. Acad. Sci. U.S.A., 88, 11207, 10.1073/pnas.88.24.11207

1988, J. Phys. Chem., 92, 2208, 10.1021/j100319a025

1990, J. Phys. Chem., 91, 2973

1989, J. Chem. Phys., 94, 6973

1993, J. Phys. Chem., 97, 3245, 10.1021/j100115a028

1991, Biochim. Biophys. Acta, 1056, 301, 10.1016/S0005-2728(05)80062-3

1991, Chem. Phys., 158, 421, 10.1016/0301-0104(91)87081-6

1991, Annu. Rev. Phys. Chem., 42, 279, 10.1146/annurev.pc.42.100191.001431

1993, J. Amer. Chem. Soc., 115, 4178, 10.1021/ja00063a041

1989, Chem. Phys. Lett., 160, 1, 10.1016/0009-2614(89)87543-8

1990, Proc. Natl. Acad. Sci., 87, 5168, 10.1073/pnas.87.13.5168

1991, Biochem., 30, 609, 10.1021/bi00217a003

1991, Proc. Natl. Acad. Sci. U.S.A., 88, 11202, 10.1073/pnas.88.24.11202

1993, J. Phys. Chem., 97, 13180, 10.1021/j100152a024

1993, Nature, 363, 320, 10.1038/363320a0

1992, J. Phys. Chem., 96, 8034, 10.1021/j100199a038

1992, J. Chem. Phys., 96, 5827, 10.1063/1.462858

1991, J. Phys. Chem., 95, 471, 10.1021/j100154a083

1985, Biochim. Biophys. Acta, 807, 221, 10.1016/0005-2728(85)90252-X

1986, Biochim. Biophys. Acta, 851, 431, 10.1016/0005-2728(86)90080-0

1987, Proc. Natl. Acad. Sci. U.S.A., 84, 1532, 10.1073/pnas.84.6.1532

1987, Proc. Natl. Acad. Sci. USA, 84, 8414, 10.1073/pnas.84.23.8414

1983, Biochim. Biophys. Acta, 725, 508, 10.1016/0005-2728(83)90191-3

1986, Sov. Phys. Coll., 26, 1

1975, Nature, 258, 573, 10.1038/258573a0

1992, J. Lumin., 53, 499, 10.1016/0022-2313(92)90207-P

1993, Nature, 361, 326, 10.1038/361326a0

1991, Nature, 350, 326

1993, Chem. Phvs. Lett., 201, 535, 10.1016/0009-2614(93)85113-3