The Prediction of the Dst-Index Based on Machine Learning Methods
Tóm tắt
Từ khóa
Tài liệu tham khảo
Cole, D.G., Space weather: Its effects and predictability, Space Sci. Rev., 2003, vol. 107, pp. 295–302.
Schrijver, C.J., Kauristie, K., Aylward, A.D., et al., Understanding space weather to shield society: A global road map 772 for 2015–2025 commissioned by COSPAR and ILWS, Adv. Space Res., 2015, vol. 55, no. 12, pp. 2745–2807.
Lazutin, L.L., Mirovye i polyarnye magnitnye buri (World and Polar Magnetic Storms), Moscow: MGU, 2012.
Kataoka, R. and Miyoshi, Y., Average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit, Ann. Geophys., 2008, vol. 26, pp. 1335–1339.
Reeves, G.D., McAdams, K.L., Friedel, R.H.W., et al., Acceleration and loss of relativistic electrons during geomagnetic storms, Geophys. Res. Lett., 2003, vol. 30, no. 10, id 1529.
Myagkova, I.N., Shugay, Yu.S., Veselovsky, I.S., and Yakovchouk, O.S., Comparative analysis of recurrent high-speed solar wind streams influence on the radiation environment of near-Earth space in April–July 2010, Sol. Syst. Res., 2013, vol. 47, no. 2, pp. 141–155.
Iucci, N., Levitin, A.E., Belov, A.V., et al., Space weather conditions and spacecraft anomalies in different orbits, Space Weather, 2005, vol. 3, no. 1, id 01001.
Romanova, N.V., Pilipenko, V.A., Yagova, N.V., and Belov, A.V., Statistical correlation of the rate of failures on geosynchronous satellites with fluxes of energetic electrons and protons, Cosmic Res., 2005, vol. 43, no. 3, pp. 179–185.
Sugiura, M., Hourly values of equatorial Dst for the IGY, Ann. Int. Geophys. Year, 1964, vol. 35, pp. 9–45.
Akasofu, S.-I. and Chapman, S., Solar-Terrestrial Physics, Oxford: Clarendon, 1972.
Ermolaev, Yu.I. and Ermolaev, M.Yu., Solar and interplanetary sources of geomagnetic storms: Space weather aspects, Geofiz. Protsessy Biosfera, 2009, vol. 8, no. 1, pp. 5–35.
Mcpherron, R.L. and O’Brien, P., Predicting geomagnetic activity: The Dst index, in Space Weather, Song, P., Singer, H.J., and Siscoe, G.L., Eds., Washington, D.C.: Am. Geophys. Union, 2001, pp. 339–345. doi 10.1029/GM125p0339
O’Brien, T.P. and McPherron, R.L., Forecasting the ring current index Dst in real time, J. Atmos. Sol.-Terr. Phys., 2000, vol. 62, no. 14, pp. 1295–1299.
Pallochia, G., Amata, E., Consolini, G., et al., Geomagnetic Dst index forecast based on IMF data only, Ann. Geophys., 2006, vol. 24, pp. 989–999.
Podladchikova, T.V. and Petrukovich, A.A., Extended geomagnetic storm forecast ahead of available solar wind measurements, Space Weather, 2012, vol. 10, no. 7, id S07001.
Patra, S., Spencer, E., Horton, W., and Sojka, J., Study of Dst/ring current recovery times using the WINDMI model, J. Geophys. Res., 2011, vol. 116, A02212.
Burton, R.K., McPherron, R.L., and Russell, C.T., An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 1975, vol. 80, no. 31, pp. 4204–4214.
Barkhatov, N.A., et al., Comparison of efficiency of artificial neural networks for forecasting the geomagnetic activity index Dst, Radiophys. Quantum Electron., 2000, vol. 43, no. 5, pp. 347–355.
Barkhatov, N.A., Levitin, A.E., and Ryabkova, G.A., Artificial Neural networks for predicting geomagnetic activity indices from parameters of the near-Earth space, in Solnechno-zemnaya fizika (Solar–Terrestrial Physics), Irkutsk, 2002, vol. 2, pp. 104–106.
Wu, J.-G. and Lundstedt, H., Geomagnetic storm predictions from solar wind data with the use of dynamic neural networks, J. Geophys. Res., 1997, vol. 102, no. A7, pp. 14255–14268.
Stepanova, M.V. and Perez, P., Autoprediction of Dst index using neural network techniques and relationship to the auroral geomagnetic indices, Geofis. Int., 2000, vol. 39, no. 1, pp. 143–146.
Revallo, M., Valach, F., Hejda, and Bochníček, J., A neural network Dst model driven by input time histories of the solar wind–magnetosphere interaction, J. Atmos. Sol.-Terr. Phys., 2014, vols. 110–111, pp. 9–14.
Amata, E., Pallocchia, G., Consolini. G., et al., Comparison between three algorithms for Dst predictions over the 2003–2005 period. J. Atmos. Sol.-Terr. Phys., 2008, 70, pp. 496–502.
Dolenko, S.A., Orlov, Yu.V., Persiantsev, I.G., and Shugai, Yu.S., Neural network algorithm for events forecasting and its application to space physics data, Lect. Notes Comput. Sci., 2005, vol. 3697, pp. 527–532.
Shirokii, V.R., Comparison between neural network models of the geomagnetic Dst-index prediction for various datasets and comparison between methods for assessing model performance, in XVII Vserossiiskaya nauchno–tekhnicheskaya konferentsiya “Neiroinformatika-2015” s mezhdunarodnym uchastiem. Sbornik nauchnykh trudov (Proceedings of the XVII All-Russian Scientific and Technical Conference “Neuroinformatics-2015” with International Attendance), Moscow: MIFI, 2015, vol. 2, pp. 51–60.
Myagkova, I., Shiroky, V., and Dolenko, S., Prediction of geomagnetic indexes with the help of artificial neural networks, in E3S Web Conf., 2017, vol. 20, id 02011.
Hochreiter, S. and Schmidhuber, J., Long short-term memory, Neural Comput., 1997, vol. 9, no. 8, pp. 1735–1780. doi 10.1162/neco.1997.9.8.1735
Keras: The Python Deep Learning library. https://keras.io/.
High-performance machine learning framework. https://www.tensorflow.org/.
Kingma, D.P. and Ba, J., Adam: A method for stochastic optimization, 2014. https://arxiv.org/abs/1412.6980.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R., Dropout: A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res., 2014, vol. 15, pp. 1929–1958.
Machine learning library SciKit-Learn. http://scikit-learn.org.