The Phyre2 web portal for protein modeling, prediction and analysis

Nature Protocols - Tập 10 Số 6 - Trang 845-858 - 2015
Lawrence A. Kelley1, Stefans Mezulis1, Christopher M. Yates2,1, Mark N. Wass3,1, Michael J.E. Sternberg1
1Structural Bioinformatics Group, Imperial College London, London, UK.
2Present address: University College London (UCL) Cancer Institute, London, UK.,
3Present address: Centre for Molecular Processing, School of Biosciences, University of Kent, Kent, UK.,

Tóm tắt

Từ khóa


Tài liệu tham khảo

Mukherjee, S., Szilagyi, A., Roy, A. & Zhang, Y . Genome-wide protein structure prediction. in Multiscale Approaches to Protein Modeling (ed. Kolinski, A.) Ch. 11, 255–279 (Springer, 2010).

Koonin, E.V., Wolf, Y.I. & Karev, G.P. The structure of the protein universe and genome evolution. Nature 420, 218–223 (2002).

Kelley, L.A. & Sternberg, M.J.E. Protein structure prediction on the web: a case study using the Phyre server. Nat. Protoc. 4, 363–371 (2009).

Mao, C. et al. Functional assignment of Mycobacterium tuberculosis proteome by genome-scale fold-recognition. Tuberculosis 1, 93 (2013).

Lewis, T.E. et al. Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains. Nucl. Acids Res. 41, D499–D507 (2013).

Fucile, G. et al. ePlant and the 3D data display initiative: integrative systems biology on the world wide web. PLoS ONE 6, e15237 (2010).

Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T. & Tramontano, A. Critical assessment of methods of protein structure prediction (CASP)—round X. Proteins 82 S2: 1–6 (2014).

Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738 (2010).

Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006).

Söding, J. Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951–960 (2005).

Lobley, A., Sadowski, M.I. & Jones, D.T. pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. Bioinformatics. 25, 1761–1767 (2009).

Raman, S. Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins 77 (suppl. 9), 89–99 (2009).

Källberg, M. et al. Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 7, 1511–1522 (2012).

Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

Remmert, M., Biegert, A., Hauser, A. & Söding, J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9, 173–175 (2012).

Jones, D.T. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol. 292, 195–202 (1999).

Canutescu, A.A. & Dunbrack, R.L. Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci. 12, 963–972 (2003).

Jefferys, B.R., Kelley, L.A. & Sternberg, M.J. Protein folding requires crowd control in a simulated cell. J. Mol. Biol. 397, 1329–1338 (2010).

Rotkiewicz, P. & Skolnick, J. Fast procedure for reconstruction of full-atom protein models from reduced representations. J. Comput. Chem. 29, 1460–1465 (2008).

Wei, X. & Sahinidis, N.V. Residue-rotamer-reduction algorithm for the protein side-chain conformation problem. Bioinformatics 22, 188–194 (2006).

Arjun, R., Lindahl, E. & Wallner, B. Improved model quality assessment using ProQ2. BMC Bioinformatics 13, 224 (2012).

Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic acids Res 35 (suppl. 2), W375–W383 (2007).

Schmidtke, P., Le Guilloux, V., Maupetit, J. & Tufféry, P. Fpocket: online tools for protein ensemble pocket detection and tracking. Nucleic acids Res 38 (suppl. 2), W582–W589 (2010).

Porter, C.T., Bartlett, G.J. & Thornton, J.M. The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic acids Res 32 (suppl. 1), D129–D133 (2004).

Yates, C.M., Filippis, I., Kelley, L.A. & Sternberg, M.J. SuSPect: enhanced prediction of single amino acid variant (SAV) phenotype using network features. J. Mol. Biol. 426, 2692–2701 (2014).

Capra, J.A. & Singh, M. Predicting functionally important residues from sequence conservation. Bioinformatics 23, 1875–1882 (2007).

Higurashi, M., Ishida, T. & Kinoshita, K. PiSite: a database of protein interaction sites using multiple binding states in the PDB. Nucleic Acids Res. 37 (Database issue): D360–D364 (2009).

Marchler-Bauer, A. et al. CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41 (D1): D348–D352 (2013).

Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

Sim, N. et al. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic acids Res. 40 W1: W452–W457 (2012).

González-Pérez, A. & López-Bigas, N. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. Am. J. Hum. Genet. 88, 440–449 (2011).

Ward, J.J., Sodhi, J.S., McGuffin, L.J., Buxton, B.F. & Jones, D.T. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 337, 635–645 (2004).

Siew, N., Elofsson, A., Rychlewski, L. & Fischer, D. MaxSub: an automated measure for the assessment of protein structure prediction quality. Bioinformatics. 16, 776–785 (2000).

Wass, M.N., Kelley, L.A. & Sternberg, M.J. 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res. 38, W469–W473 (2010).

Jones, D.T. Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 3, 538–544 (2007).