The Peregrine soliton in nonlinear fibre optics

Nature Physics - Tập 6 Số 10 - Trang 790-795 - 2010
Bertrand Kibler1, Julien Fatome1, Christophe Finot1, G. Millot1, Frédéric Dias2,3, Goëry Genty4, Nail Akhmediev5, John M. Dudley6
1Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS-Universite de Bourgogne, Dijon, France
2Centre de Mathématiques et de Leurs Applications (CMLA), ENS Cachan, 94230 Cachan, France
3UCD School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
4Tampere University of Technology, Optics Laboratory, FI-33101 Tampere, Finland
5Optical Sciences Group, Research School of Physics and Engineering, Institute of Advanced Studies, The Australian National University, Canberra ACT 0200, Australia
6Institut FEMTO-ST, UMR 6174 CNRS-Université de Franche-Comté, 25030 Besançon, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Peregrine, D. H. Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. Ser. B 25, 16–43 (1983).

Akhmediev, N. & Korneev, V. I. Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69, 1089–1093 (1986).

Henderson, K. L, Peregrine, D. H. & Dold, J. W. Unsteady water wave modulations: Fully nonlinear solutions and comparison with the nonlinear Schrödinger equation. Wave Motion 29, 341–361 (1999).

Dysthe, K. B. & Trulsen, K. Note on breather type solutions of the NLS as models for freak-waves. Phys. Scripta 82, 48–52 (1999).

Kharif, C., Pelinovsky, E. & Slunyaev, A. Rogue Waves in the Ocean (Springer-Verlag, 2009).

Akhmediev, N., Soto-Crespo, J. M. & Ankiewicz, A. Extreme waves that appear from nowhere: On the nature of rogue waves. Phys. Lett. A 373, 2137–2145 (2009).

Shrira, V. I. & Geoigjaev, V. V. What makes the Peregrine soliton so special as a prototype of freak waves? J. Eng. Math. 67, 11–22 (2010).

Taylor, J. R. (ed.) Optical Solitons Theory & Experiment (Cambridge Univ. Press, 1992).

Dauxois, Th. & Peyrard, M. Physics of Solitons (Cambridge Univ. Press, 2006).

Denschlag, J. et al. Generating solitons by phase engineering of a Bose–Einstein condensate. Science 287, 97–101 (2000).

Fermi, E., Pasta, J. & Ulam, S. in Collected Papers of Enrico Fermi (ed. Segre, E.) 978–988 (Univ. Chicago Press, 1965).

Akhmediev, N. & Ankiewicz, A. Solitons, Nonlinear Pulses and Beams (Chapman and Hall, 1997).

Sato, M. & Sievers, A. J. Direct observation of the discrete character of intrinsic localized modes in an antiferromagnet. Nature 432, 486–488 (2004).

Bespalov, V. I. & Talanov, V. J. Filamentary structure of light beams in nonlinear liquids. JETP Lett. 3, 307–310 (1966).

Benjamin, T. B. & Feir, J. E. The disintegration of wavetrains on deep water. Part 1: Theory. J. Fluid Mech. 27, 417–430 (1967).

Hasegawa, A. Generation of a train of soliton pulses by induced modulational instability in optical fibres. Opt. Lett. 9, 288–290 (1984).

Tai, K., Tomita, A., Jewell, J. L. & Hasegawa, A. Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability. Appl. Phys. Lett. 49, 236–238 (1986).

Hart, D. L., Judy, A. F., Roy, R. & Beletic, J. W. Dynamical evolution of multiple four-wave-mixing processes in an optical fiber. Phys. Rev. E 57, 4757–4774 (1998).

Greer, E. J., Patrick, D. M., Wigley, P. G. J. & Taylor, J. R. Generation of 2 THz repetition rate pulse trains through induced modulational instability. Electron. Lett. 25, 1246–1248 (1989).

Mamyshev, P. V., Chernikov, S. V., Dianov, E. M. & Prokhorov, A. M. Generation of a high-repetition-rate train of practically noninteracting solitons by using the induced modulational instability and Raman self-scattering effects. Opt. Lett. 15, 1365–1367 (1990).

Trillo, S. & Wabnitz, S. Dynamics of the nonlinear modulational instability in optical fibres. Opt. Lett. 16, 986–988 (1991).

Fatome, J., Pitois, S. & Millot, G. 20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers. IEEE J. Quantum Electron. 42, 1038–1046 (2006).

Van Simaeys, G., Emplit, Ph. & Haelterman, M. Experimental demonstration of the Fermi–Pasta–Ulam recurrence in a modulationally unstable optical wave. Phys. Rev. Lett. 87, 033902 (2001).

Dudley, J. M., Genty, G., Dias, F., Kibler, B. & Akhmediev, N. Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation. Opt. Exp. 17, 21497–21508 (2009).

Dudley, J. M., Finot, C., Richardson, D. J. & Millot, G. Self similarity in ultrafast nonlinear optics. Nature Phys. 3, 597–603 (2007).

Solli, D. R., Ropers, C., Koonath, P. & Jalali, B. Optical rogue waves. Nature 450, 1054–1057 (2007).

Doktorov, E. V., Rothos, V. M. & Kivshar, Y. S. Full-time dynamics of modulational instability in spinor Bose–Einstein condensates. Phys. Rev. A 76, 013626 (2007).

Agrawal, G. P. Nonlinear Fibre Optics 4th edn (Academic, 2007).

Dudley, J. M. et al. Complete intensity and phase characterisation of optical pulse trains at THz repetition rates. Electron. Lett. 35, 2042–2044 (1999).

Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fibre. Rev. Mod. Phys. 78, 1135–1184 (2006).