The Peregrine soliton in nonlinear fibre optics
Tóm tắt
Từ khóa
Tài liệu tham khảo
Peregrine, D. H. Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. Ser. B 25, 16–43 (1983).
Akhmediev, N. & Korneev, V. I. Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69, 1089–1093 (1986).
Henderson, K. L, Peregrine, D. H. & Dold, J. W. Unsteady water wave modulations: Fully nonlinear solutions and comparison with the nonlinear Schrödinger equation. Wave Motion 29, 341–361 (1999).
Dysthe, K. B. & Trulsen, K. Note on breather type solutions of the NLS as models for freak-waves. Phys. Scripta 82, 48–52 (1999).
Kharif, C., Pelinovsky, E. & Slunyaev, A. Rogue Waves in the Ocean (Springer-Verlag, 2009).
Akhmediev, N., Soto-Crespo, J. M. & Ankiewicz, A. Extreme waves that appear from nowhere: On the nature of rogue waves. Phys. Lett. A 373, 2137–2145 (2009).
Shrira, V. I. & Geoigjaev, V. V. What makes the Peregrine soliton so special as a prototype of freak waves? J. Eng. Math. 67, 11–22 (2010).
Dauxois, Th. & Peyrard, M. Physics of Solitons (Cambridge Univ. Press, 2006).
Denschlag, J. et al. Generating solitons by phase engineering of a Bose–Einstein condensate. Science 287, 97–101 (2000).
Fermi, E., Pasta, J. & Ulam, S. in Collected Papers of Enrico Fermi (ed. Segre, E.) 978–988 (Univ. Chicago Press, 1965).
Akhmediev, N. & Ankiewicz, A. Solitons, Nonlinear Pulses and Beams (Chapman and Hall, 1997).
Sato, M. & Sievers, A. J. Direct observation of the discrete character of intrinsic localized modes in an antiferromagnet. Nature 432, 486–488 (2004).
Bespalov, V. I. & Talanov, V. J. Filamentary structure of light beams in nonlinear liquids. JETP Lett. 3, 307–310 (1966).
Benjamin, T. B. & Feir, J. E. The disintegration of wavetrains on deep water. Part 1: Theory. J. Fluid Mech. 27, 417–430 (1967).
Hasegawa, A. Generation of a train of soliton pulses by induced modulational instability in optical fibres. Opt. Lett. 9, 288–290 (1984).
Tai, K., Tomita, A., Jewell, J. L. & Hasegawa, A. Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability. Appl. Phys. Lett. 49, 236–238 (1986).
Hart, D. L., Judy, A. F., Roy, R. & Beletic, J. W. Dynamical evolution of multiple four-wave-mixing processes in an optical fiber. Phys. Rev. E 57, 4757–4774 (1998).
Greer, E. J., Patrick, D. M., Wigley, P. G. J. & Taylor, J. R. Generation of 2 THz repetition rate pulse trains through induced modulational instability. Electron. Lett. 25, 1246–1248 (1989).
Mamyshev, P. V., Chernikov, S. V., Dianov, E. M. & Prokhorov, A. M. Generation of a high-repetition-rate train of practically noninteracting solitons by using the induced modulational instability and Raman self-scattering effects. Opt. Lett. 15, 1365–1367 (1990).
Trillo, S. & Wabnitz, S. Dynamics of the nonlinear modulational instability in optical fibres. Opt. Lett. 16, 986–988 (1991).
Fatome, J., Pitois, S. & Millot, G. 20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers. IEEE J. Quantum Electron. 42, 1038–1046 (2006).
Van Simaeys, G., Emplit, Ph. & Haelterman, M. Experimental demonstration of the Fermi–Pasta–Ulam recurrence in a modulationally unstable optical wave. Phys. Rev. Lett. 87, 033902 (2001).
Dudley, J. M., Genty, G., Dias, F., Kibler, B. & Akhmediev, N. Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation. Opt. Exp. 17, 21497–21508 (2009).
Dudley, J. M., Finot, C., Richardson, D. J. & Millot, G. Self similarity in ultrafast nonlinear optics. Nature Phys. 3, 597–603 (2007).
Solli, D. R., Ropers, C., Koonath, P. & Jalali, B. Optical rogue waves. Nature 450, 1054–1057 (2007).
Doktorov, E. V., Rothos, V. M. & Kivshar, Y. S. Full-time dynamics of modulational instability in spinor Bose–Einstein condensates. Phys. Rev. A 76, 013626 (2007).
Agrawal, G. P. Nonlinear Fibre Optics 4th edn (Academic, 2007).
Dudley, J. M. et al. Complete intensity and phase characterisation of optical pulse trains at THz repetition rates. Electron. Lett. 35, 2042–2044 (1999).