The Peano phenomenon for Itô equations

Journal of Mathematical Sciences - Tập 192 - Trang 441-458 - 2013
Ivan G. Krykun1, Sergei Ya. Makhno1
1Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Donetsk, Ukraine

Tóm tắt

The weak convergence of the measures generated by the solutions of stochastic Itô equations with low diffusion is studied, as the diffusion tends to zero. It is proved that the limiting measure in the presence of the Peano phenomenon for a relevant ordinary differential equation is concentrated on its extreme solutions with definite weights. The formulas for their calculation are given.

Tài liệu tham khảo

R. P. Agarwal and V. Lakshmikantham, Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, World Scientific, Singapore, 1993. L. Ambrosio, N. Gigli, and S. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Birkhäuser, Basel, 2005. P. Baldi, “Petites perturbations d’un phenomene Peano,” Ann. Sci. de l’Univ. de Clermont-Ferrand 2, 71, No. 20, 41–52 (1982). P. Baldi and R. Bafico, “Small Random Perturbations of Peano Phenomena,” Stochast., 6, 279–292 (1982). R. Buckdahn, M. Quincampoix, and Y. Ouknine, “On limiting values of stochastic differential equations with small noise intensity tending to zero,” Bull. des Sci. Math., 133, (2009), 229–237. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. M. A. Evgrafov, Asymptotic Estimates and Entire Functions, Gordon and Breach, New York, 1961. M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer, New York, 1998. I. I. Gikhman and A. V. Skorokhod, Stochastic Diffential Equations, Springer, New York, 1972. I. I. Gikhman and A. V. Skorokhod, Stochastic Diffential Equations and Their Applications, Springer, Berlin, 1972. M. Gradinaru, S. Herrmann, and B. Roynette, “A singular large deviations phenomenon,” Ann. Inst. H. Poincaré Prob. Stat., 37, No. 5, 555—580 (2001). P. Hartman, Ordinary Differential Equations, SIAM, Philadelphia, 2002. N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North Holland, Amsterdam, 1981. N. V. Krylov, Controlled Diffusion Processes, Springer, Berlin, 1980. N. V. Krylov, “On weak uniqueness for some diffusions with discontinuous coefficients,” Stoch. Process. Their Appl., 113, No. 2, 37–44 (2004). S. Nakao, “On the pathwise uniqueness of solutions of one dimensional stochastic differential equations,” Osaka J. Math., 9, No. 3, 513–518 (1972). E. I. Ostrovskii, “The exact asymptotics of the Laplace integrals for nonsmooth functions,” Mat. Zam., 73, No. 6, 886–890 (2003). L. Schwartz, Analyse [in French], Hermann, Paris, 1998. A. N. Shiryaev, Probability, Springer, Berlin, 1996. D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, Springer, Berlin, 1979. A. Yu. Veretennikov and N. V. Krylov, “On explicit formulas for the solutions of stochastic equations,” Mat. Sborn., 100, No. 2, 266–284 (1976). A. Yu. Veretennikov, “On the approximation of ordinary differential equations by stochastic ones,” Mat. Zam., 33, No. 6, 929—932 (1983).