The Pauzhetka tephra (South Kamchatka): A key middle Pleistocene isochron for the Northwest Pacific and Okhotsk Sea sediments

Quaternary Geochronology - Tập 79 - Trang 101476 - 2024
Natalia Bubenshchikova1, Vera Ponomareva2, Maxim Portnyagin3, Dirk Nürnberg3, Weng-si Chao4, Lester Lembke-Jene5, Ralf Tiedemann5
1Shirshov Institute of Oceanology RAS, 36 Nakhimovsky Prosp., Moscow, 117997, Russia
2Institute of Volcanology and Seismology, Piip boulevard 9, Petropavlovsk-Kamchatsky 683006, Russia
3GEOMAR, Helmholtz Center for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel, Germany
4Alfred Wegener Institute-Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
5Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany

Tài liệu tham khảo

Addison, 2010, Marine tephrochronology of the Mt. Edgecumbe volcanic field, southeast Alaska, USA, Quat. Res., 73, 277, 10.1016/j.yqres.2009.10.007 Albert, 2019, Geochemical characterisation of the Late Quaternary widespread Japanese tephrostratigraphic markers and correlations to the Lake Suigetsu sedimentary archive (SG06 core), Quat. Geochronol., 52, 103, 10.1016/j.quageo.2019.01.005 Aoki, 2020, Dawson tephra, a widespread 29‐ka marker bed, in a marine core from Patton Seamount off the Alaska Peninsula and its potential marine–terrestrial correlation, J. Quat. Sci., 35, 93, 10.1002/jqs.3176 Austin, 2012, Tracing time in the ocean: a brief review of chronological constraints (60–8 kyr) on North Atlantic marine event-based stratigraphies, Quat. Sci. Rev., 36, 28, 10.1016/j.quascirev.2012.01.015 Bassinot, 1994, The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal, Earth. Plan. Sci. Let., 126, 91, 10.1016/0012-821X(94)90244-5 Biebow, 1999, vol. 82, 188 Bubenshchikova, 2018, 37 Cao, 1995, 345 Channell, 2009, Stacking paleointensity and oxygen isotope data for the last 1.5 Myrs (PISO-1500), Earth. Plan. Sci. Let., 283, 14, 10.1016/j.epsl.2009.03.012 Channell, 2012, ODP Site 1063 (Bermuda Rise) revisited: oxygen isotopes, excursions and paleointensity in the Brunhes Chron, Geochem. Geophys. Geosyst., 13 Channell, 2020, Timing of Quaternary geomagnetic reversals and excursions in volcanic and sedimentary archives, Quat. Sci. Rev., 228, 106, 10.1016/j.quascirev.2019.106114 Chao, 2023 Chen, 2021, Geochemistry of surface sediments from the Emperor seamount Chain, North Pacific, Front. Earth Sci., 9 Daggitt, 2014, AshCalc – a new tool for the comparison of the exponential, power-law and Weibull models of tephra deposition, J. Appl. Volcanol., 3, 1, 10.1186/2191-5040-3-7 Davies, 2016, Late Pleistocene and Holocene tephrostratigraphy of interior Alaska and Yukon: key beds and chronologies over the past 30,000 years, Quat. Sci. Rev., 146, 28, 10.1016/j.quascirev.2016.05.026 Derkachev, 2012, Characteristics and ages of tephra layers in the central Okhotsk Sea over the last 350 kyr, Deep Sea Res. Part II Top. Stud. Oceanogr., 61, 179, 10.1016/j.dsr2.2011.05.015 Derkachev, 2016, Tephra layers of in the quaternary deposits of the Sea of Okhotsk: distribution, composition, age and volcanic sources, Quat. Int., 425, 248, 10.1016/j.quaint.2016.07.004 Derkachev, 2018, Widespread tephra layers in the Bering Sea sediments: distal clues to large explosive eruptions from the Aleutian volcanic arc, Bull. Volcanol., 80, 80, 10.1007/s00445-018-1254-9 Derkachev, 2020, Middle to late Pleistocene record of explosive volcanic eruptions in marine sediments offshore Kamchatka (Meiji Rise, NW Pacific), J. Quat. Sci., 35, 362, 10.1002/jqs.3175 Derkachev, 2023, Tephrostratigraphy of Pleistocene-Holocene deposits from the Detroit Rise eastern slope (northwestern Pacific), Front. Earth Sci., 10, 10.3389/feart.2022.971404 Downs, 2018, Volcanic history of the northernmost part of the Harrat Rahat volcanic field, Saudi Arabia, Geosphere, 14, 1253, 10.1130/GES01625.1 Freundt, 2021, Tephra layers in the marine environment: a review of properties and emplacement processes, Geol. Soc., London, Spec. Publ., 520, 10.1144/SP520-2021-50 Fricker, 2011, High spatial resolution trace element analysis by LA-ICP-MS using a novel ablation cell for multiple or large samples, Int. J. Mass Spectrom., 307, 39, 10.1016/j.ijms.2011.01.008 Fuhr, 2021, Tracing water mass mixing from the equatorial to the North Pacific Ocean with dissolved neodymium isotopes and concentrations, Front. Mar. Sci., 7, 10.3389/fmars.2020.603761 Gebhardt, 2008, Paleonutrient and productivity records from the subarctic North Pacific for Pleistocene glacial terminations I to V, Paleoceanography, 23, PA4212, 10.1029/2007PA001513 Gorbarenko, 2002, Magnetostratigraphy and tephrochronology of the Upper Quaternary sediments in the Okhotsk Sea: implication of terrigenous, volcanogenic and biogenic matter supply, Mar. Geol., 183, 107, 10.1016/S0025-3227(02)00164-0 Gouretski, 2004, WOCE global hydrograhic climatology, Berichte des BSH, 35, 52 Griffin, 2008, GLITTER: data reduction software for laser ablation ICP-MS, laser Ablation-ICP-MS in the Earth Sciences, vol. 40, 204 Hanawa, 2001, 373 Jaccard, 2010, A pervasive link between Antarctic ice core and subarctic Pacific sediment records over the past 800 kyrs, Quat. Sci. Rev., 29, 206, 10.1016/j.quascirev.2009.10.007 Jarosewich, 1980, Reference samples for electron microprobe analysis, Geostand. Newsl., 4, 43, 10.1111/j.1751-908X.1980.tb00273.x Jochum, 2006, MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios, Geochem. Geophys Geosyst., 7, 10.1029/2005GC001060 Kaiser, 2001, 113 Kawabe, 2010, Pacific ocean circulation based on observation, J. Oceanogr., 66, 389, 10.1007/s10872-010-0034-8 Kuehn, 2011, The INTAV intercomparison of electron-beam microanalysis of glass by tephrochronology laboratories: results and recommendations, Quat. Int., 246, 19, 10.1016/j.quaint.2011.08.022 Legros, 2000, Minimum volume of a tephra fallout deposit estimated from a single isopach, J. Volcanol. Geotherm. Res., 96, 25, 10.1016/S0377-0273(99)00135-3 Le Maitre, 2002 Lisiecki, 2005, A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003 Lisitzin, 1996, 400 Lowe, 2011, Tephrochronology and its application: a review, Quat. Geochronol., 6, 107, 10.1016/j.quageo.2010.08.003 Lund, 2001, vol. 172, 1 Mason, 2004, The size and frequency of the largest explosive eruptions on Earth, Bulletin of Volcanology, 66, 735, 10.1007/s00445-004-0355-9 Mosbah, 1991, PIGME fluorine determination using a nuclear microprobe with application to glass inclusions, Nucl. Instrum. Methods Phys. Res., B58, 227, 10.1016/0168-583X(91)95592-2 Nürnberg, 2004, Environmental change in the Sea of Okhotsk during last 1.1 million years, Paleoceanography, 19, PA4011, 10.1029/2004PA001023 Nürnberg, 2018, Cruise report SO264-SONNE-EMPEROR: the PlioPleistocene to Holocene Development of the pelagic North Pacific from surface to depth – Assessing its role for the global Carbon Budget and Earth’s climate, Suva (Fiji) – Yokohama (Japan), 30.6. – 24.8.2018, vol. 46, 284 Nürnberg, 2011, Okhotsk Sea ice coverage and Kamchatka glaciation over the last 350 ka – evidence from ice‐rafted debris and planktonic δ18O, Palaeogeogr. Palaeoclimatol. Palaeoecol., 310, 191, 10.1016/j.palaeo.2011.07.011 Ogg, 2020, 159 Pearce, 1996, Sources and settings of granitic rocks, Episodes J. Int. Geosci., 19, 120, 10.18814/epiiugs/1996/v19i4/005 Pearce, 1984, Trace-element discrimination diagrams for the tectonic interpretation of granitic-rocks, J. Petrol., 25, 956, 10.1093/petrology/25.4.956 Pettke, 2004, Accurate quantification of melt inclusion chemistry by LA-ICPMS: a comparison with EMP and SIMS and advantages and possible limitations of these methods, Lithos, 78, 333, 10.1016/j.lithos.2004.06.011 Plank, 1998, The chemical composition of subducting sediment and its consequences for the crust and mantle, Chem. Geol., 143, 325, 10.1016/S0009-2541(97)00150-2 Ponomareva, 2004, The 7600 (14C) year BP Kurile Lake caldera-forming eruption, Kamchatka, Russia: stratigraphy and field relationships, J. Volcanol. Geotherm. Res., 136, 199, 10.1016/j.jvolgeores.2004.05.013 Ponomareva, 2013, Identification of a widespread Kamchatkan tephra: a middle Pleistocene tie-point between Arctic and Pacific paleoclimatic records, Geophys. Res. Let., 40, 3538, 10.1002/grl.50645 Ponomareva, 2018, Large-magnitude Pauzhetka caldera-forming eruption in Kamchatka: astrochronologic age, composition and tephra dispersal, J. Volcanol. Geotherm. Res., 366, 1, 10.1016/j.jvolgeores.2018.10.006 Ponomareva, 2018, Holocene tephra from the Chukchi-Alaskan margin, Arctic Ocean: Implications for sediment chronostratigraphy and volcanic history, Quat. Geochronol., 45, 85, 10.1016/j.quageo.2017.11.001 Portnyagin, 2020, TephraKam: geochemical database of glass compositions in tephra and welded tuffs from the Kamchatka volcanic arc (northwestern Pacific), Earth Syst. Sci. Data, 12, 469, 10.5194/essd-12-469-2020 Pozzi, 2019, U-Th dated speleothem recorded geomagnetic excursions in the Lower Brunhes, Sci. Rep., 9, 1114, 10.1038/s41598-018-38350-4 Preece, 2011, Old Crow tephra across eastern Beringia: a single cataclysmic eruption at the close of Marine Isotope Stage 6, Quat. Sci. Rev., 30, 2069, 10.1016/j.quascirev.2010.04.020 Prell, 1977, Winnowing of recent and late quaternary deep-Sea sediments: Colombia basin, Caribbean sea, J. Sediment. Res., 47, 1583 Pyle, 1989, The thickness, volume and grain size of tephra fall deposits, Bull. Volcanol., 51, 1, 10.1007/BF01086757 Rea, 1993 Reyes, 2023, Detrital glass in a Bering Sea sediment core yields a ca. 160 ka Marine Isotope Stage 6 age for Old Crow tephra, Geology, 51, 106, 10.1130/G50491.1 Rostov, 2002, vol. 2 Rothwell, 2015, vol. 17, 25 Schlitzer, 2021 Serno, 2014, Eolian dust input to the subarctic North Pacific, Earth Planet Sci. Lett., 387, 252, 10.1016/j.epsl.2013.11.008 Thouveny, 2004, Geomagnetic moment variation and paleomagnetic excursions since 400 kyr BP: a stacked record from sedimentary sequences of the Portuguese margin, Earth Planet Sci. Lett., 219, 377, 10.1016/S0012-821X(03)00701-5 Tiedemann, 1995, 283 van den Bogaard, C., Jensen, B.J.L., Pearce, N.J.G., Froese, D.G., Portnyagin, M.V., Ponomareva, V.V., Wennrich, V., 2014. Volcanic ash layers in Lake El'gygytgyn: eight new regionally significant chronostratigraphic markers for western Beringia. Climate of the Past, 10(3), 1041-1062. https://doi.org/10.5194/cp-10-1041-2014, 2014. Wang, 2021, Dating North pacific abyssal sediments by geomagnetic paleointensity: implications of magnetization carriers, plio-pleistocene climate change, and benthic redox conditions, Front. Earth Sci., 577 Weeks, 1995, 491