The Pauzhetka tephra (South Kamchatka): A key middle Pleistocene isochron for the Northwest Pacific and Okhotsk Sea sediments
Tài liệu tham khảo
Addison, 2010, Marine tephrochronology of the Mt. Edgecumbe volcanic field, southeast Alaska, USA, Quat. Res., 73, 277, 10.1016/j.yqres.2009.10.007
Albert, 2019, Geochemical characterisation of the Late Quaternary widespread Japanese tephrostratigraphic markers and correlations to the Lake Suigetsu sedimentary archive (SG06 core), Quat. Geochronol., 52, 103, 10.1016/j.quageo.2019.01.005
Aoki, 2020, Dawson tephra, a widespread 29‐ka marker bed, in a marine core from Patton Seamount off the Alaska Peninsula and its potential marine–terrestrial correlation, J. Quat. Sci., 35, 93, 10.1002/jqs.3176
Austin, 2012, Tracing time in the ocean: a brief review of chronological constraints (60–8 kyr) on North Atlantic marine event-based stratigraphies, Quat. Sci. Rev., 36, 28, 10.1016/j.quascirev.2012.01.015
Bassinot, 1994, The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal, Earth. Plan. Sci. Let., 126, 91, 10.1016/0012-821X(94)90244-5
Biebow, 1999, vol. 82, 188
Bubenshchikova, 2018, 37
Cao, 1995, 345
Channell, 2009, Stacking paleointensity and oxygen isotope data for the last 1.5 Myrs (PISO-1500), Earth. Plan. Sci. Let., 283, 14, 10.1016/j.epsl.2009.03.012
Channell, 2012, ODP Site 1063 (Bermuda Rise) revisited: oxygen isotopes, excursions and paleointensity in the Brunhes Chron, Geochem. Geophys. Geosyst., 13
Channell, 2020, Timing of Quaternary geomagnetic reversals and excursions in volcanic and sedimentary archives, Quat. Sci. Rev., 228, 106, 10.1016/j.quascirev.2019.106114
Chao, 2023
Chen, 2021, Geochemistry of surface sediments from the Emperor seamount Chain, North Pacific, Front. Earth Sci., 9
Daggitt, 2014, AshCalc – a new tool for the comparison of the exponential, power-law and Weibull models of tephra deposition, J. Appl. Volcanol., 3, 1, 10.1186/2191-5040-3-7
Davies, 2016, Late Pleistocene and Holocene tephrostratigraphy of interior Alaska and Yukon: key beds and chronologies over the past 30,000 years, Quat. Sci. Rev., 146, 28, 10.1016/j.quascirev.2016.05.026
Derkachev, 2012, Characteristics and ages of tephra layers in the central Okhotsk Sea over the last 350 kyr, Deep Sea Res. Part II Top. Stud. Oceanogr., 61, 179, 10.1016/j.dsr2.2011.05.015
Derkachev, 2016, Tephra layers of in the quaternary deposits of the Sea of Okhotsk: distribution, composition, age and volcanic sources, Quat. Int., 425, 248, 10.1016/j.quaint.2016.07.004
Derkachev, 2018, Widespread tephra layers in the Bering Sea sediments: distal clues to large explosive eruptions from the Aleutian volcanic arc, Bull. Volcanol., 80, 80, 10.1007/s00445-018-1254-9
Derkachev, 2020, Middle to late Pleistocene record of explosive volcanic eruptions in marine sediments offshore Kamchatka (Meiji Rise, NW Pacific), J. Quat. Sci., 35, 362, 10.1002/jqs.3175
Derkachev, 2023, Tephrostratigraphy of Pleistocene-Holocene deposits from the Detroit Rise eastern slope (northwestern Pacific), Front. Earth Sci., 10, 10.3389/feart.2022.971404
Downs, 2018, Volcanic history of the northernmost part of the Harrat Rahat volcanic field, Saudi Arabia, Geosphere, 14, 1253, 10.1130/GES01625.1
Freundt, 2021, Tephra layers in the marine environment: a review of properties and emplacement processes, Geol. Soc., London, Spec. Publ., 520, 10.1144/SP520-2021-50
Fricker, 2011, High spatial resolution trace element analysis by LA-ICP-MS using a novel ablation cell for multiple or large samples, Int. J. Mass Spectrom., 307, 39, 10.1016/j.ijms.2011.01.008
Fuhr, 2021, Tracing water mass mixing from the equatorial to the North Pacific Ocean with dissolved neodymium isotopes and concentrations, Front. Mar. Sci., 7, 10.3389/fmars.2020.603761
Gebhardt, 2008, Paleonutrient and productivity records from the subarctic North Pacific for Pleistocene glacial terminations I to V, Paleoceanography, 23, PA4212, 10.1029/2007PA001513
Gorbarenko, 2002, Magnetostratigraphy and tephrochronology of the Upper Quaternary sediments in the Okhotsk Sea: implication of terrigenous, volcanogenic and biogenic matter supply, Mar. Geol., 183, 107, 10.1016/S0025-3227(02)00164-0
Gouretski, 2004, WOCE global hydrograhic climatology, Berichte des BSH, 35, 52
Griffin, 2008, GLITTER: data reduction software for laser ablation ICP-MS, laser Ablation-ICP-MS in the Earth Sciences, vol. 40, 204
Hanawa, 2001, 373
Jaccard, 2010, A pervasive link between Antarctic ice core and subarctic Pacific sediment records over the past 800 kyrs, Quat. Sci. Rev., 29, 206, 10.1016/j.quascirev.2009.10.007
Jarosewich, 1980, Reference samples for electron microprobe analysis, Geostand. Newsl., 4, 43, 10.1111/j.1751-908X.1980.tb00273.x
Jochum, 2006, MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios, Geochem. Geophys Geosyst., 7, 10.1029/2005GC001060
Kaiser, 2001, 113
Kawabe, 2010, Pacific ocean circulation based on observation, J. Oceanogr., 66, 389, 10.1007/s10872-010-0034-8
Kuehn, 2011, The INTAV intercomparison of electron-beam microanalysis of glass by tephrochronology laboratories: results and recommendations, Quat. Int., 246, 19, 10.1016/j.quaint.2011.08.022
Legros, 2000, Minimum volume of a tephra fallout deposit estimated from a single isopach, J. Volcanol. Geotherm. Res., 96, 25, 10.1016/S0377-0273(99)00135-3
Le Maitre, 2002
Lisiecki, 2005, A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003
Lisitzin, 1996, 400
Lowe, 2011, Tephrochronology and its application: a review, Quat. Geochronol., 6, 107, 10.1016/j.quageo.2010.08.003
Lund, 2001, vol. 172, 1
Mason, 2004, The size and frequency of the largest explosive eruptions on Earth, Bulletin of Volcanology, 66, 735, 10.1007/s00445-004-0355-9
Mosbah, 1991, PIGME fluorine determination using a nuclear microprobe with application to glass inclusions, Nucl. Instrum. Methods Phys. Res., B58, 227, 10.1016/0168-583X(91)95592-2
Nürnberg, 2004, Environmental change in the Sea of Okhotsk during last 1.1 million years, Paleoceanography, 19, PA4011, 10.1029/2004PA001023
Nürnberg, 2018, Cruise report SO264-SONNE-EMPEROR: the PlioPleistocene to Holocene Development of the pelagic North Pacific from surface to depth – Assessing its role for the global Carbon Budget and Earth’s climate, Suva (Fiji) – Yokohama (Japan), 30.6. – 24.8.2018, vol. 46, 284
Nürnberg, 2011, Okhotsk Sea ice coverage and Kamchatka glaciation over the last 350 ka – evidence from ice‐rafted debris and planktonic δ18O, Palaeogeogr. Palaeoclimatol. Palaeoecol., 310, 191, 10.1016/j.palaeo.2011.07.011
Ogg, 2020, 159
Pearce, 1996, Sources and settings of granitic rocks, Episodes J. Int. Geosci., 19, 120, 10.18814/epiiugs/1996/v19i4/005
Pearce, 1984, Trace-element discrimination diagrams for the tectonic interpretation of granitic-rocks, J. Petrol., 25, 956, 10.1093/petrology/25.4.956
Pettke, 2004, Accurate quantification of melt inclusion chemistry by LA-ICPMS: a comparison with EMP and SIMS and advantages and possible limitations of these methods, Lithos, 78, 333, 10.1016/j.lithos.2004.06.011
Plank, 1998, The chemical composition of subducting sediment and its consequences for the crust and mantle, Chem. Geol., 143, 325, 10.1016/S0009-2541(97)00150-2
Ponomareva, 2004, The 7600 (14C) year BP Kurile Lake caldera-forming eruption, Kamchatka, Russia: stratigraphy and field relationships, J. Volcanol. Geotherm. Res., 136, 199, 10.1016/j.jvolgeores.2004.05.013
Ponomareva, 2013, Identification of a widespread Kamchatkan tephra: a middle Pleistocene tie-point between Arctic and Pacific paleoclimatic records, Geophys. Res. Let., 40, 3538, 10.1002/grl.50645
Ponomareva, 2018, Large-magnitude Pauzhetka caldera-forming eruption in Kamchatka: astrochronologic age, composition and tephra dispersal, J. Volcanol. Geotherm. Res., 366, 1, 10.1016/j.jvolgeores.2018.10.006
Ponomareva, 2018, Holocene tephra from the Chukchi-Alaskan margin, Arctic Ocean: Implications for sediment chronostratigraphy and volcanic history, Quat. Geochronol., 45, 85, 10.1016/j.quageo.2017.11.001
Portnyagin, 2020, TephraKam: geochemical database of glass compositions in tephra and welded tuffs from the Kamchatka volcanic arc (northwestern Pacific), Earth Syst. Sci. Data, 12, 469, 10.5194/essd-12-469-2020
Pozzi, 2019, U-Th dated speleothem recorded geomagnetic excursions in the Lower Brunhes, Sci. Rep., 9, 1114, 10.1038/s41598-018-38350-4
Preece, 2011, Old Crow tephra across eastern Beringia: a single cataclysmic eruption at the close of Marine Isotope Stage 6, Quat. Sci. Rev., 30, 2069, 10.1016/j.quascirev.2010.04.020
Prell, 1977, Winnowing of recent and late quaternary deep-Sea sediments: Colombia basin, Caribbean sea, J. Sediment. Res., 47, 1583
Pyle, 1989, The thickness, volume and grain size of tephra fall deposits, Bull. Volcanol., 51, 1, 10.1007/BF01086757
Rea, 1993
Reyes, 2023, Detrital glass in a Bering Sea sediment core yields a ca. 160 ka Marine Isotope Stage 6 age for Old Crow tephra, Geology, 51, 106, 10.1130/G50491.1
Rostov, 2002, vol. 2
Rothwell, 2015, vol. 17, 25
Schlitzer, 2021
Serno, 2014, Eolian dust input to the subarctic North Pacific, Earth Planet Sci. Lett., 387, 252, 10.1016/j.epsl.2013.11.008
Thouveny, 2004, Geomagnetic moment variation and paleomagnetic excursions since 400 kyr BP: a stacked record from sedimentary sequences of the Portuguese margin, Earth Planet Sci. Lett., 219, 377, 10.1016/S0012-821X(03)00701-5
Tiedemann, 1995, 283
van den Bogaard, C., Jensen, B.J.L., Pearce, N.J.G., Froese, D.G., Portnyagin, M.V., Ponomareva, V.V., Wennrich, V., 2014. Volcanic ash layers in Lake El'gygytgyn: eight new regionally significant chronostratigraphic markers for western Beringia. Climate of the Past, 10(3), 1041-1062. https://doi.org/10.5194/cp-10-1041-2014, 2014.
Wang, 2021, Dating North pacific abyssal sediments by geomagnetic paleointensity: implications of magnetization carriers, plio-pleistocene climate change, and benthic redox conditions, Front. Earth Sci., 577
Weeks, 1995, 491