The Parametrix Method for Skew Diffusions

Springer Science and Business Media LLC - Tập 45 - Trang 299-329 - 2016
Arturo Kohatsu-Higa1, Dai Taguchi1, Jie Zhong2
1Ritsumeikan University, Kusatsu, Japan
2Department of Mathematics, University of Central Florida, Orlando, USA

Tóm tắt

In this article, we apply the parametrix method in order to obtain the existence and the regularity properties of the density of a skew diffusion and provide a Gaussian upper bound. This expansion leads to a probabilistic representation.

Tài liệu tham khảo

Andersson, P., Kohatsu-Higa, A.: Unbiased simulation of stochastic differential equations using parametrix expansions (2015) Bally, V., Kohatsu-Higa, A.: A probabilistic interpretation of the parametrix method. Ann. Appl. Probab. 25, 3095–3138 (2015) Corielli, F., Foschi, P., Pascucci, A.: Parametrix approximation of diffusion transition densities. SIAM J. Financ. Math. 1, 833–867 (2010) Étoré, P.: On random walk simulation of one-dimensional diffusion processes with discontinuous coefficients. Electron. J. Probab. 11, 249–275 (2006) Étoré, P., Martinez, M.: Exact simulation of one-dimensional stochastic differential equations involving the local time at zero the unknown process. Monte Carlo Methods Appl. 19, 41–71 (2013) Friedman, A.: Partial Differential Equations of Parabolic Type. Dover, New York (1964) Gairat, A., Shcherbakov, V.: Density of skew Brownian motion and its functionals with application in finance. Preprint arXiv:1407.1715v2 (2014) Harrison, J.M., Shepp, L.A.: On skew Brownian motion. Ann. Probab. 9, 309–313 (1981) Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, Berlin (1998) Kestelman, H.: Modern Theories of Integration, 2nd edn. Dover, New York (1960) Krylov, N.V.: On Itô stochastic integral equations. Theory Probab. Appl. 14 (2), 330–336 (1969) Kulik, A.M.: On the solution of a one-dimensional stochastic differential equation with singular drift coefficient. Ukr. Math. J. 56(5), 774–789 (2004) Le Gall, J.F.: One-dimensional stochastic differential equations involving the local times of the unknown process. Stoch. Anal. Appl. Lect. Notes Math. 1095, 51–82 (1984) Lejay, A.: On the constructions of the skew Brownian motion. Probab. Surv. 3, 413–466 (2006) Lejay, A., Martinez, M.: A scheme for simulating one-dimensional diffusion processes with discontinuous coefficients. Ann. Appl. Probab. 16(1), 107–139 (2006) Martinez, M., Talay, D.: One-dimensional parabolic diffraction equations: pointwise estimates and discretization of related stochastic differential equations with weighted times. Elect. J. Probab. 17(27), 1–32 (2012) Menozzi, S.: Parametrix techniques and martingale problems for some degenerate Kolmogorov equations. Electron. Commun. Probab. 16, 234–250 (2011) Nakao, S.: On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations. Osaka J. Math. 9, 513–518 (1972) Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 2nd edn. Grundlehren der Mathematischen Wissenschaften (1999)