The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences
Tóm tắt
Từ khóa
Tài liệu tham khảo
Perez-Riverol, 2019, Quantifying the impact of public omics data, Nat. Commun., 10, 3512, 10.1038/s41467-019-11461-w
Perez-Riverol, 2019, The PRIDE database and related tools and resources in 2019: improving support for quantification data, Nucleic Acids Res., 47, D442, 10.1093/nar/gky1106
Deutsch, 2020, The ProteomeXchange consortium in 2020: enabling ‘big data’ approaches in proteomics, Nucleic Acids Res., 48, D1145
Ternent, 2014, How to submit MS proteomics data to ProteomeXchange via the PRIDE database, Proteomics, 14, 2233, 10.1002/pmic.201400120
Griss, 2014, The mzTab data exchange format: communicating mass-spectrometry-based proteomics and metabolomics experimental results to a wider audience, Mol. Cell. Proteomics, 13, 2765, 10.1074/mcp.O113.036681
Vizcaino, 2017, The mzIdentML Data Standard Version 1.2, Supporting Advances in Proteome Informatics, Mol. Cell. Proteomics, 16, 1275, 10.1074/mcp.M117.068429
Martens, 2011, mzML–a community standard for mass spectrometry data, Mol. Cell. Proteomics, 10, R110 000133, 10.1074/mcp.R110.000133
Vizcaino, 2014, ProteomeXchange provides globally coordinated proteomics data submission and dissemination, Nat. Biotechnol., 32, 223, 10.1038/nbt.2839
Perez-Riverol, 2016, PRIDE Inspector Toolsuite: moving toward a universal visualization tool for proteomics data standard formats and quality assessment of ProteomeXchange datasets, Mol. Cell. Proteomics, 15, 305, 10.1074/mcp.O115.050229
Yates, 2020, Ensembl 2020, Nucleic Acids Res., 48, D682
UniProt, 2021, UniProt: the universal protein knowledgebase in 2021, Nucleic Acids Res., 49, D480, 10.1093/nar/gkaa1100
Papatheodorou, 2020, Expression Atlas update: from tissues to single cells, Nucleic Acids Res., 48, D77
Deutsch, 2008, PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows, EMBO Rep., 9, 429, 10.1038/embor.2008.56
Farrah, 2012, PASSEL: the PeptideAtlas SRMexperiment library, Proteomics, 12, 1170, 10.1002/pmic.201100515
Choi, 2020, MassIVE.quant: a community resource of quantitative mass spectrometry-based proteomics datasets, Nat. Methods, 17, 981, 10.1038/s41592-020-0955-0
Moriya, 2019, The jPOST environment: an integrated proteomics data repository and database, Nucleic. Acids. Res., 47, D1218, 10.1093/nar/gky899
Sharma, 2018, Panorama public: a public repository for quantitative data sets processed in skyline, Mol. Cell. Proteomics, 17, 1239, 10.1074/mcp.RA117.000543
Deutsch, 2021, Universal Spectrum Identifier for mass spectra, Nat. Methods, 18, 768, 10.1038/s41592-021-01184-6
Drysdale, 2020, The ELIXIR Core Data Resources: fundamental infrastructure for the life sciences, Bioinformatics, 36, 2636, 10.1093/bioinformatics/btz959
Xu, 2014, jmzTab: a java interface to the mzTab data standard, Proteomics, 14, 1328, 10.1002/pmic.201300560
Reisinger, 2012, jmzIdentML API: a Java interface to the mzIdentML standard for peptide and protein identification data, Proteomics, 12, 790, 10.1002/pmic.201100577
Perez-Riverol, 2015, ms-data-core-api: an open-source, metadata-oriented library for computational proteomics, Bioinformatics, 31, 2903, 10.1093/bioinformatics/btv250
Uszkoreit, 2019, Protein inference using PIA workflows and PSI standard file formats, J. Proteome Res., 18, 741, 10.1021/acs.jproteome.8b00723
Uszkoreit, 2015, PIA: an intuitive protein inference engine with a web-based user interface, J. Proteome Res., 14, 2988, 10.1021/acs.jproteome.5b00121
Perkins, 1999, Probability-based protein identification by searching sequence databases using mass spectrometry data, Electrophoresis, 20, 3551, 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
Cox, 2008, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat. Biotechnol., 26, 1367, 10.1038/nbt.1511
Pfeuffer, 2017, OpenMS–a platform for reproducible analysis of mass spectrometry data, J. Biotechnol., 261, 142, 10.1016/j.jbiotec.2017.05.016
Sinitcyn, 2021, MaxDIA enables library-based and library-free data-independent acquisition proteomics, Nat. Biotechnol., 10.1038/s41587-021-00968-7
Perez-Riverol, 2017, OLS client and OLS dialog: open source tools to annotate public omics datasets, Proteomics, 17, 1700244, 10.1002/pmic.201700244
Mischak, 2007, Clinical proteomics: a need to define the field and to begin to set adequate standards, Proteomics Clin Appl, 1, 148, 10.1002/prca.200600771
Griss, 2015, Identifying novel biomarkers through data mining-a realistic scenario?, Proteomics Clin. Appl., 9, 437, 10.1002/prca.201400107
Perez-Riverol, 2020, Toward a sample metadata standard in public proteomics repositories, J. Proteome Res., 19, 3906, 10.1021/acs.jproteome.0c00376
Dai, 2021, A proteomics sample metadata representation for multiomics integration and big data analysis, Nat. Commun., 12, 5854, 10.1038/s41467-021-26111-3
Rayner, 2006, A simple spreadsheet-based, MIAME-supportive format for microarray data: MAGE-TAB, BMC Bioinformatics, 7, 489, 10.1186/1471-2105-7-489
Gostev, 2012, The BioSample Database (BioSD) at the European Bioinformatics Institute, Nucleic Acids Res., 40, D64, 10.1093/nar/gkr937
Schmidt, 2021, Universal spectrum explorer: a standalone (web-)application for cross-resource spectrum comparison, J. Proteome Res., 20, 3388, 10.1021/acs.jproteome.1c00096
Griss, 2016, Recognizing millions of consistently unidentified spectra across hundreds of shotgun proteomics datasets, Nat. Methods, 13, 651, 10.1038/nmeth.3902
Qin, 2021, Deep learning embedder method and tool for mass spectra similarity search, J. Proteomics, 232, 104070, 10.1016/j.jprot.2020.104070
Bittremieux, 2021, Large-scale tandem mass spectrum clustering using fast nearest neighbor searching, Rapid Commun. Mass Spectrom., e9153, 10.1002/rcm.9153
Cook, 2020, The European Bioinformatics Institute in 2020: building a global infrastructure of interconnected data resources for the life sciences, Nucleic Acids Res., 48, D17, 10.1093/nar/gkz1033
Harrison, 2021, The COVID-19 Data Portal: accelerating SARS-CoV-2 and COVID-19 research through rapid open access data sharing, Nucleic Acids Res., 49, W619, 10.1093/nar/gkab417
Brunet, 2021, OpenProt 2021: deeper functional annotation of the coding potential of eukaryotic genomes, Nucleic Acids Res., 49, D380, 10.1093/nar/gkaa1036
Shao, 2020, MatrisomeDB: the ECM-protein knowledge database, Nucleic Acids Res., 48, D1136, 10.1093/nar/gkz849
Ramasamy, 2020, Scop3P: a comprehensive resource of human phosphosites within their full context, J. Proteome Res., 19, 3478, 10.1021/acs.jproteome.0c00306
Kustatscher, 2019, Co-regulation map of the human proteome enables identification of protein functions, Nat. Biotechnol., 37, 1361, 10.1038/s41587-019-0298-5
Omenn, 2020, Research on the human proteome reaches a major milestone: >90% of predicted human proteins now credibly detected, according to the HUPO human proteome project, J. Proteome Res., 19, 4735, 10.1021/acs.jproteome.0c00485
Mitchell, 2020, MGnify: the microbiome analysis resource in 2020, Nucleic Acids Res., 48, D570
Umer, 2021, Generation of ENSEMBL-based proteogenomics databases boosts the identification of non-canonical peptides, 10.1093/bioinformatics/btab838
Watkins, 2017, ProtVista: visualization of protein sequence annotations, Bioinformatics, 33, 2040, 10.1093/bioinformatics/btx120
Ochoa, 2020, The functional landscape of the human phosphoproteome, Nat. Biotechnol., 38, 365, 10.1038/s41587-019-0344-3
Jarnuczak, 2021, An integrated landscape of protein expression in human cancer, Sci Data, 8, 115, 10.1038/s41597-021-00890-2
Walzer, 2021, Implementing the re-use of public DIA proteomics datasets: from the PRIDE database to Expression Atlas, 10.1101/2021.06.08.447493
Bandeira, 2021, Data management of sensitive human proteomics data: current practices, recommendations, and perspectives for the future, Mol. Cell. Proteomics, 20, 100071, 10.1016/j.mcpro.2021.100071
Keane, 2021, The growing need for controlled data access models in clinical proteomics and metabolomics, Nat. Commun., 12, 5787, 10.1038/s41467-021-26110-4
Leitner, 2020, Toward increased reliability, transparency, and accessibility in cross-linking mass spectrometry, Structure, 28, 1259, 10.1016/j.str.2020.09.011
Bai, 2021, BioContainers Registry: searching bioinformatics and proteomics tools, packages, and containers, J. Proteome Res., 20, 2056, 10.1021/acs.jproteome.0c00904