Cơ sở dữ liệu PRECISE (Chăm sóc thai kỳ tích hợp Khoa học chuyển giao, trên toàn cầu): thu thập dữ liệu truy cập mở trong sức khỏe bà mẹ và trẻ sơ sinh

Springer Science and Business Media LLC - Tập 17 - Trang 1-13 - 2020
Laura A. Magee1, Amber Strang1, Larry Li2, Domena Tu2, Warancha Tumtaweetikul2, Rachel Craik1, Marina Daniele1, Angela Koech Etyang3, Umberto D’Alessandro4, Ofordile Ogochukwu4, Anna Roca4, Esperança Sevene5,6, Paulo Chin6, Corssino Tchavana6, Marleen Temmerman3, Peter von Dadelszen1
1Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
2Department of Obstetrics & Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
3Centre of Excellence in Women & Child Health, East Africa, Aga Khan University, Nairobi, Kenya
4Medical Research Council Unit The Gambia At the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
5Department of Physiological Science, Clinical Pharmacology, Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique
6Centro de Investigação em Saúde de Manhiça, Manhiça, Mozambique

Tóm tắt

Tại những khu vực có nguồn lực hạn chế, tỷ lệ kết quả thai kỳ bất lợi là không thể chấp nhận được. Để cải thiện tình hình, chúng ta cần dữ liệu dịch tễ học chính xác về tỷ lệ tử vong và bệnh tật, cũng như các yếu tố xã hội ảnh hưởng đến sức khỏe và quy trình chăm sóc, từ mỗi quốc gia (hoặc khu vực) để xây dựng các chiến lược phù hợp. Cơ sở dữ liệu PRECISE là một hạ tầng cốt lõi độc nhất của nền tảng thu thập dữ liệu thống nhất, chung. Nó được xây dựng dựa trên các công việc trước đây về hài hòa hóa dữ liệu, tiêu chuẩn hóa kết quả và các lĩnh vực dữ liệu, phần mềm truy cập mở (Hệ thống Thông tin Y tế Quận 2 và Hệ thống Quản lý Thông tin Phòng thí nghiệm Baobab), cùng với mạng lưới nghiên cứu lâm sàng. Cơ sở dữ liệu chứa các chỉ số được khuyến nghị toàn cầu, được bao gồm trong các mẫu báo cáo và ghi chép của Hệ thống Thông tin Quản lý Sức khỏe. Nó bao gồm các kết quả then chốt (tử vong của bà mẹ và trẻ sơ sinh), các can thiệp cứu sống (xét nghiệm Virus gây suy giảm miễn dịch ở người, đo huyết áp, liệu pháp sắt, sử dụng thuốc co hồi tử cung sau sinh, đánh giá bà mẹ trong vòng 48 giờ sau khi sinh, và hồi sức trẻ sơ sinh, tiếp xúc da kề da ngay lập tức, và làm khô ngay lập tức), cùng với 17 biến hành chính cốt lõi bổ sung cho cả mẹ và trẻ. Ngoài ra, cơ sở dữ liệu còn có một loạt các mô-đun bổ sung cho việc ‘mô tả sâu’ dựa trên các công cụ đã được thiết lập, bao gồm các yếu tố xã hội của sức khỏe (bao gồm tình trạng kinh tế xã hội, dinh dưỡng và môi trường), các bệnh đồng mắc ở bà mẹ, sức khỏe tâm thần, bạo lực đối với phụ nữ và hệ thống y tế. Cơ sở dữ liệu có tiềm năng để hỗ trợ nghiên cứu dịch tễ học chất lượng cao trong tương lai, tích hợp với chăm sóc lâm sàng và khám phá khoa học sinh học.

Từ khóa

#sức khỏe bà mẹ #sức khỏe trẻ sơ sinh #dữ liệu dịch tễ học #hệ thống thông tin y tế #can thiệp cứu sống

Tài liệu tham khảo

Alkema L, Chou D, Hogan D, Zhang S, Moller AB, Gemmill A, et al. Global, regional, and national levels and trends in maternal mortality between 1990 and 2015, with scenario-based projections to 2030: a systematic analysis by the UN maternal mortality estimation inter-agency group. Lancet. 2016;387(10017):462–74. Blencowe H, Cousens S, Jassir FB, Say L, Chou D, Mathers C, et al. National, regional, and worldwide estimates of stillbirth rates in 2015, with trends from 2000: a systematic analysis. Lancet Glob Health. 2016;4(2):e98–e108. World Health Organization. Global health observatory data. 2017. https://www.who.int/gho/child_health/mortality/neonatal/en/. Evaluating the quality of care for severe pregnancy complications - the WHO near-miss approach for maternal health; 2011. https://www.who.int/reproductivehealth/publications/monitoring/9789241502221/en/. Accessed 20 Mar 2019. Santos JP, Cecatti JG, Serruya SJ, Almeida PV, Duran P, Mucio B, et al. Neonatal near miss: the need for a standard definition and appropriate criteria and the rationale for a prospective surveillance system. Clinics (Sao Paulo). 2015;70(12):820–6. Souza JP, Tuncalp O, Vogel JP, Bohren M, Widmer M, Oladapo OT, et al. Obstetric transition: the pathway towards ending preventable maternal deaths. BJOG. 2014;121(Suppl 1):1–4. Myers JE, Myatt L, Roberts JM, Redman C. COLLECT, a collaborative database for pregnancy and placental research studies worldwide. BJOG. 2019;126(1):8–10. REDCap (Research Electronic Data Capture). https://www.project-redcap.org/.2019.Mar.7. Accessed 20 Mar 2019. Report by the Director General 71st World Assembly. mHealth. Use of appropriate digital technologies for public health. 2018. Global Pregnancy CoLaboratory COLLECT database. https://pre-empt.bcchr.ca/collaboration/global-pregnancy-collaboration.2019.Mar.7. Accessed 20 Mar 2019. Myatt L, Redman CW, Staff AC, Hansson S, Wilson ML, Laivuori H, et al. Strategy for standardization of preeclampsia research study design. Hypertension. 2014;63(6):1293–301. Health Management Information Systems Review. Survey on data availability in electronic systems for maternal and newborn health in 24 USAID priority countries: Maternal and Child Survival Program; 2016. www.mcsprogram.org. Craik R, et al. Baobab laboratory information management system. BMC Reprod Health. 2019; (submitted). von Dadelszen P, Flint-O'Kane M, Poston L, Craik R, Russell D, Tribe RM, et al. The PRECISE (PREgnancy Care Integrating translational Science, Everywhere) Protocol. Reprod Health. 2019; (in press). Makanga PT, Sacoor C, Schuurman N, Lee T, Vilanculo FC, Munguambe K, et al. Place-specific factors associated with adverse maternal and perinatal outcomes in southern Mozambique: a retrospective cohort study. BMJ Open. 2019;9(2):e024042. Makanga PT, Schuurman N, Sacoor C, Boene HE, Vilanculo F, Vidler M, et al. Seasonal variation in geographical access to maternal health services in regions of southern Mozambique. Int J Health Geogr. 2017;16(1):1. The DHS Program (Demographic and Health Surveys); 2018. https://www.dhsprogram.com/What-We-Do/Survey-Types/DHS-Questionnaires.cfm. Accessed 20 Mar 2019. The Community-Level Intervention in Pre-eclampsia (CLIP) Trials; 2019. https://pre-empt.bcchr.ca/treatment/clip-community-level-interventions-pre-eclampsia. Accessed 20 Mar 2019. Grameen Poverty Probability Index; 2018. https://www.povertyindex.org/. Accessed 20 Mar 2019. The Multidimensional Poverty Assessment Tool (MPAT); 2014. https://www.ifad.org/en/web/knowledge/publication/asset/39631564. Accessed 20 Mar 2019. UNICEF Multiple Indicator Cluster Surveys (MICS) - Household Questionnaire; 2019. https://washdata.org/unicef-multiple-indicator-cluster-surveys-mics. Accessed 20 Mar 2019. The Health Life Trajectories Initiative (HeLTI); 2019. http://www.cihr-irsc.gc.ca/e/50275.html. Accessed 20 Mar 2019. World Health Organization, Geneva; 2016. https://apps.who.int/iris/bitstream/handle/10665/250796/9789241549912-eng.pdf;jsessionid=61A96E4C86451A3213193FADACD213CA?sequence=1. Maternal Death Notification Form - South Africa. https://www.who.int/maternal_child_adolescent/epidemiology/maternal-death-surveillance/case-studies/south-africa/en/.2014. Accessed 20 Mar 2019. Maternal Woice Tool: Antenatal care; 2018. https://www.who.int/reproductivehealth/MM_ANC_questionnaire.pdf?ua=1. Accessed 20 Mar 2019. von Dadelszen P, Payne B, Li J, Ansermino JM, Broughton PF, Cote AM, et al. Prediction of adverse maternal outcomes in pre-eclampsia: development and validation of the fullPIERS model. Lancet. 2011;377(9761):219–27. Payne BA, Hutcheon JA, Ansermino JM, Hall DR, Bhutta ZA, Bhutta SZ, et al. A risk prediction model for the assessment and triage of women with hypertensive disorders of pregnancy in low-resourced settings: the miniPIERS (Pre-eclampsia Integrated Estimate of RiSk) multi-country prospective cohort study. PLoS Med. 2014;11(1):e1001589. Payne BA, Groen H, Ukah UV, Ansermino JM, Bhutta Z, Grobman W, et al. Development and internal validation of a multivariable model to predict perinatal death in pregnancy hypertension. Pregnancy Hypertens. 2015;5(4):315–21. INDEPTH Standardized Verbal Autopsy Questionnaire; 2003. http://www.indepth-network.org/resources/indepth-standardized-verbal-autopsy-questionnaire. Accessed 20 Mar 2019. Duffy JM, van’t Hooft J, Gale C, Brown M, Grobman W, Fitzpatrick R, et al. A protocol for developing, disseminating, and implementing a core outcome set for pre-eclampsia. Pregnancy Hypertens. 2016;6(4):274–8. Villar J, Papageorghiou AT, Knight HE, Gravett MG, Iams J, Waller SA, et al. The preterm birth syndrome: a prototype phenotypic classification. Am J Obstet Gynecol. 2012;206(2):119–23. Intergrowth-21 standards for weight at birth; 2014. https://intergrowth21.tghn.org/newborn-size-birth/. Accessed 20 Mar 2019. Averting Maternal Death and Disability (AMDD) needs assessment toolkit; 2015. https://www.mailman.columbia.edu/research/averting-maternal-death-and-disability-amdd/toolkit. Accessed 20 Mar 2019. The WHO Application of ICD-10 to deaths during pregnancy, childbirth and the puerperium: ICD-MM; 2012. https://apps.who.int/iris/bitstream/handle/10665/70929/9789241548458_eng.pdf?sequence=1. Accessed 20 Mar 2019. Republic of Kenya MoH. Maternal death review form (MDRF) MOH 372. 2017. www.health.go.ke. Tura AK, Stekelenburg J, Scherjon SA, Zwart J, van den Akker T, van Roosmalen J, et al. Adaptation of the WHO maternal near miss tool for use in sub-Saharan Africa: an international Delphi study. BMC Pregnancy Childbirth. 2017;17(1):445. Aggarwal AK, Jain V, Kumar R. Validity of verbal autopsy for ascertaining the causes of stillbirth. Bull World Health Organ. 2011;89(1):31–40. Lavin T, Allanson ER, Nedkoff L, Preen DB, Pattinson RC. Applying the international classification of diseases to perinatal mortality data, South Africa. Bull World Health Organ. 2018;96(12):806–16. World Health Organization, Geneva; 2016. https://www.who.int/maternal_child_adolescent/documents/stillbirth-neonatal-death-review/en/. Post-traumatic stress disorder (PTSD) checklist - civilian version, PCL-C; 2003. https://www.mirecc.va.gov/docs/visn6/3_ptsd_checklist_and_scoring.pdf. Accessed 20 Mar 2019. Maternal Woice tool: Postnatal care; 2018. https://www.who.int/reproductivehealth/MM_PPC_questionnaire.pdf. Accessed 20 Mar 2019. WHO Disability Assessment Schedule 2.0 (WHODAS 2.0). World Health Organization, Geneva; 2010. https://www.who.int/classifications/icf/whodasii/en/. World Health Organization, Geneva; 2016. http://goldencommunity.org.np/en-smile/. The International Consortium for Health Outcomes Measurement (ICHOM) standard set for pregnancy and childbirth; 2017. https://www.ichom.org/portfolio/pregnancy-and-childbirth/. Accessed 20 Mar 2019. Santos JP, Pileggi-Castro C, Camelo JS Jr, Silva AA, Duran P, Serruya SJ, et al. Neonatal near miss: a systematic review. BMC Pregnancy Childbirth. 2015;15:320. Venkateswaran M, Morkrid K, Ghanem B, Abbas E, Abuward I, Baniode M, et al. eRegQual-an electronic health registry with interactive checklists and clinical decision support for improving quality of antenatal care: study protocol for a cluster randomized trial. Trials. 2018;19(1):54. Dehnavieh R, Haghdoost A, Khosravi A, Hoseinabadi F, Rahimi H, Poursheikhali A, et al. The District Health Information System (DHIS2): a literature review and meta-synthesis of its strengths and operational challenges based on the experiences of 11 countries. Health Inf Manag. 2018. https://doi.org/10.1177/1833358318777713. Open Data Kit; 2019. https://opendatakit.org/. Accessed 20 Mar 2019. Brunette W, Sudar S, Sundt M, Larson C, Beorse J, Anderson R. Open Data Kit 2.0: a services-based application framework for disconnected data management; 2017. https://doi.org/10.1145/3081333.3081365. Open Medical Record System (MRS); 2019. https://openmrs.org/. Accessed 20 Mar 2019. Healthy Birth, Growth & Development (HBGDki); 2019. http://hbgdki.org. Accessed 20 Mar 2019. Haazen DS, et al. eHealth technical paper. M-A4Health (Measurement and accountability for results in health): a common agenda for the post-2015 era. 2015. https://www.who.int/healthsystems/news/MA4Health/en/. Burke O, Benton S, Szafranski P, von Dadelszen P, Buhimschi SC, Cetin I, et al. Extending the scope of pooled analyses of individual patient biomarker data from heterogeneous laboratory platforms and cohorts using merging algorithms. Pregnancy Hypertens. 2016;6(1):53–9. Kendall T. Critical maternal health knowledge gaps in low- and middle-income countries for post-2015: researchers’ perspectives. Boston: Harvard T H Chan School of Public Health; 2015. Ndabarora E, Chipps JA, Uys L. Systematic review of health data quality management and best practices at community and district levels in LMIC. Inf Dev. 2013;30:103. Froen JF, Myhre SL, Frost MJ, Chou D, Mehl G, Say L, et al. eRegistries: electronic registries for maternal and child health. BMC Pregnancy Childbirth. 2016;16:11. Bjerregaard-Andersen M, Gomes MA, Joaquim LC, Rodrigues A, Jensen DM, Christensen K, et al. Establishing a twin registry in Guinea-Bissau. Twin Res Hum Genet. 2013;16(1):179–84. Sacoor C, Nhacolo A, Nhalungo D, Aponte JJ, Bassat Q, Augusto O, et al. Profile: Manhica Health Research Centre (Manhica HDSS). Int J Epidemiol. 2013;42(5):1309–18.